import gradio as gr
import numpy as np
from PIL import Image
import random
from transformers import AutoImageProcessor, AutoModel
import torch
import timm
import torch.nn.functional as F
from torchvision import transforms
import time
import subprocess
import os
from facenet_pytorch import MTCNN
mtcnn = MTCNN(keep_all=False)
def crop_face_to_112x112(image, count = None):
if image is None:
return None, None
if image.size == (112, 112):
processed = image
else:
boxes, _ = mtcnn.detect(image)
if boxes is None:
raise ValueError("No face detected.")
x1, y1, x2, y2 = map(int, boxes[0])
cropped = image.crop((x1, y1, x2, y2))
processed = cropped.resize((112, 112), Image.BILINEAR)
if count != None:
subjectDir = f'./uploaded_images/uploadedSubj'
os.makedirs(subjectDir, exist_ok=True)
img_path = f'{subjectDir}/uploadedSubj-{count}-img.jpg'
count =+1
processed.save(img_path)
return processed, img_path, count # for enroll only
else:
subjectDir = f'./uploaded_probe_images/uploadedSubj'
os.makedirs(subjectDir, exist_ok=True)
img_path = f'{subjectDir}/img.jpg'
processed.save(img_path)
return processed, img_path
def numSTR(num):
return str(num)
SECURITYLEVELS = ["128", "196", "256"]
FRMODELS = ["gaunernst/vit_tiny_patch8_112.arcface_ms1mv3",
"gaunernst/vit_tiny_patch8_112.cosface_ms1mv3"]
def display_enrolled_image():
file_path = './Server/subjOffsetMapping.txt'
subjects = set()
with open(file_path, 'r') as file:
for line in file:
parts = line.strip().split()
if parts:
subjects.add(parts[0])
subjects = list(subjects)
enrDB = [img for subject in subjects for img in example_images if subject in img]
if 'uploadedSubj' in subjects:
dir_path = './uploaded_images/uploadedSubj/'
enrDB += [os.path.join(dir_path, f) for f in os.listdir(dir_path)]
return enrDB
def runBinFile(*args):
print(args)
binary_path = args[0]
if not os.path.isfile(binary_path):
return "Error: Compiled binary not found."
try:
if 'genkeys' in args:
runBinFile(*[args[0], args[1], 'delete'])
os.chmod(binary_path, 0o755)
start = time.time()
result = subprocess.run(
list(args),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
end = time.time()
duration = (end - start)
if 'print' in args:
return result.stdout
elif ('styledPrint' in args) and (result.returncode == 0):
return True, f"⏱️ Processing Time: {duration:.2f} s", styled_output(result.stdout)
elif 'styledPrint' in args:
return styled_output(result.stdout)
elif result.returncode == 0:
return True, f"⏱️ Processing Time: {duration:.2f} s"
else:
return False
except Exception as e:
return f"Execution failed: {e}"
example_images = ['./VGGFace2/n000001/0002_01.jpg',
'./VGGFace2/n000149/0002_01.jpg',
'./VGGFace2/n000082/0001_02.jpg',
'./VGGFace2/n000148/0014_01.jpg',
'./VGGFace2/n000129/0001_01.jpg',
'./VGGFace2/n000394/0007_01.jpg',
]
example_images_auth = ['./VGGFace2/n000001/0013_01.jpg',
'./VGGFace2/n000149/0019_01.jpg',
'./VGGFace2/n000082/0003_03.jpg',
'./VGGFace2/n000148/0043_01.jpg',
'./VGGFace2/n000129/0006_01.jpg',
'./VGGFace2/n000394/0018_01.jpg',
]
def display_image(image):
return image
def display_enrolled_image():
file_path = './Server/subjOffsetMapping.txt'
subjects = set()
with open(file_path, 'r') as file:
for line in file:
parts = line.strip().split()
if parts:
subjects.add(parts[0])
subjects = list(subjects)
enrDB = [img for subject in subjects for img in example_images if subject in img]
if 'uploadedSubj' in subjects:
dir_path = './uploaded_images/uploadedSubj/'
enrDB += [os.path.join(dir_path, f) for f in os.listdir(dir_path)]
return enrDB
def display_usedOffsets():
file_path = './Server/subjOffsetMapping.txt'
offsets = set()
with open(file_path, 'r') as file:
for line in file:
parts = line.strip().split()
if parts:
offsets.add(parts[1])
usedoff= list(offsets)
formatted = ", ".join(map(str, usedoff))
return f"**Choose an available offset. Unavailable offsets :** {formatted}"
def load_rec_image():
return f'static/reconstructed.png'
def extract_emb(image, modelName=FRMODELS[0], mode=None, imgPath=None):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
image = transform(image)
image = image.unsqueeze(0)
model = timm.create_model(f"hf_hub:{modelName}", pretrained=True).eval()
with torch.no_grad():
embs = model(image)
embs = F.normalize(embs, dim=1)
embs = embs.detach().numpy()
embs = embs.squeeze(0)
if mode != None:
subject = imgPath.split('/')[-2]
os.makedirs(f'./embeddings/{subject}', exist_ok=True)
emb_path = f'./embeddings/{subject}/{mode}-emb.txt'
np.savetxt(emb_path, embs.reshape(1, embs.shape[0]), fmt="%.6f", delimiter=',')
return embs, emb_path
return embs
def get_selected_image(evt: gr.SelectData):
return example_images[evt.index], example_images[evt.index]
def get_selected_image_auth(evt: gr.SelectData):
return example_images_auth[evt.index], example_images_auth[evt.index]
def styled_output(result):
if result.strip().lower() == "found":
return "✔️ Found"
elif result.strip().lower() == "not found":
return "❌ Not Found"
else:
return "Error"
with gr.Blocks() as demo:
gr.HTML(
"""
Suraksh.AI
https://suraksh-ai.vercel.app/
"""
)
gr.Markdown("# Biometric Search (1:N search) using Fully Homomorphic Encryption (FHE)")
gr.HTML(
"""
This demo shows Suraksh.AI's biometric search solution under FHE.
- Scenario 1: Searching an enrolled subject. For this scenario, the reference and probe should be from the same subject. Expected outcome: ✔️ Found
- Scenario 2: Searching an enrolled subject with high recognition threshold. For this scenario, the reference and probe should be from the same subject and the recognition threshold set to a high value. Expected outcome: ❌ Not Found
- Scenario 3: Searching a non-enrolled subject. For this scenario, choose a probe not enrolled. Expected outcome: ❌ Not Found
- Scenario 4: Searching a non-enrolled subject with low recognition threshold. For this scenario, choose a probe not enrolled and lower the high recognition threshold. Expected outcome: ✔️ Found
"""
)
with gr.Row():
gr.Markdown("### Setup Phase: 🔐 Generate the FHE public and secret keys.")
with gr.Row():
with gr.Column():
securityLevel = gr.Dropdown(
choices=SECURITYLEVELS,
label="Choose a security level"
)
with gr.Column():
key_button = gr.Button("Generate the FHE public and secret keys")
key_status = gr.Checkbox(label="FHE Public and Secret keys generated.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("genkeys")], outputs=[key_status,time_output])
with gr.Row():
gr.Markdown("## Phase 1: Enrollment")
with gr.Row():
gr.Markdown("### Step 1: Upload or select a reference facial image for enrollment.")
with gr.Row():
selectedImagePath = gr.State()
count = gr.State(0)
image_input_enroll = gr.Image(type="pil", visible=False)
with gr.Column():
image_upload_enroll = gr.Image(label="Upload a reference facial image.", type="pil", sources="upload")
image_upload_enroll.change(fn=crop_face_to_112x112, inputs=[image_upload_enroll, count], outputs=[image_input_enroll, selectedImagePath, count])
with gr.Column():
refDB_gallery = gr.Gallery(value=example_images, columns=3)
refDB_gallery.select(fn=get_selected_image, inputs=None, outputs=[image_input_enroll, selectedImagePath])
with gr.Column():
selectedImage = gr.Image(type="pil", label="Reference facial image", interactive=False)
image_input_enroll.change(fn=lambda img: img, inputs=image_input_enroll, outputs=selectedImage)
with gr.Row():
gr.Markdown("### Step 2: Generate reference embedding.")
with gr.Row():
with gr.Column():
modelName = gr.Dropdown(
choices=FRMODELS,
label="Choose a face recognition model"
)
with gr.Column():
key_button = gr.Button("Generate embedding")
enroll_emb_text = gr.JSON(label="Reference embedding")
mode = gr.State("enroll")
ref_emb_path = gr.State()
key_button.click(fn=extract_emb, inputs=[image_input_enroll, modelName, mode, selectedImagePath], outputs=[enroll_emb_text, ref_emb_path])
with gr.Row():
gr.Markdown("""Facial embeddings are **INVERTIBLE** and lead to the **RECONSTRUCTION** of their raw facial images.""")
with gr.Row():
gr.Markdown("### Example:")
with gr.Row():
original_image = gr.Image(value="static/original.jpg", label="Original", sources="upload")
key_button = gr.Button("Generate embedding")
output_text = gr.JSON(label="Target embedding")
key_button.click(fn=extract_emb, inputs=[original_image, modelName], outputs=output_text)
btn = gr.Button("Reconstruct facial image")
Reconstructed_image = gr.Image(label="Reconstructed")
btn.click(fn=load_rec_image, outputs=Reconstructed_image)
with gr.Row():
gr.Markdown("""Facial embeddings protection is a must! At **Suraksh.AI**, we protect facial embeddings using FHE.""")
with gr.Row():
gr.Markdown("### Step 3: 🔒 Encrypt reference embedding using FHE.")
with gr.Row():
gr.Markdown("### Set subject offset.")
with gr.Row():
with gr.Column():
usedOffsets = gr.Markdown()
subjOffset = gr.Number(value=1, label="Subject offset", info='Between 1 and 8192 for security levels of 128 and 192 bits and between 1 and 16384 for the security level 256 bits.')
subjOffset_txt = gr.Textbox(visible=False, value = '1')
subjOffset.change(fn=display_usedOffsets, inputs=None, outputs = usedOffsets)
subjOffset.change(fn=numSTR, inputs=subjOffset, outputs=subjOffset_txt)
with gr.Row():
with gr.Column():
key_button = gr.Button("Encrypt")
key_status = gr.Checkbox(label="Reference embedding encrypted.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("encRef"), ref_emb_path, subjOffset_txt], outputs=[key_status, time_output])
with gr.Column():
key_button = gr.Button("Display")
output_text = gr.Text(label="Encrypted embedding", lines=3, interactive=False)
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("printVectorCipher"), gr.State("encRef"), gr.State("print")], outputs=output_text)
with gr.Row():
gr.Markdown("### Step 4: 🔒 Add encrypt reference to the encrypted reference DB.")
with gr.Row():
with gr.Column():
add_button = gr.Button("Add")
add_status = gr.Checkbox(label="Encrypted reference DB updated with the encrypted reference.", value=False)
time_output = gr.HTML()
add_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("addRef")], outputs=[add_status, time_output])
with gr.Column():
key_button = gr.Button("Display")
output_text = gr.Text(label="Encrypted reference DB", lines=3, interactive=False)
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("printVectorCipher"), gr.State("encRefDB"), gr.State("print")], outputs=output_text)
with gr.Row():
gr.Markdown("## Phase 2: Search")
with gr.Row():
gr.Markdown("### Step 1: Upload or select a probe facial image for search.")
with gr.Row():
selectedImagePath_auth = gr.State()
image_input_auth = gr.Image(type="pil", visible=False)
with gr.Column():
image_upload_auth = gr.Image(label="Upload a facial image.", type="pil", sources="upload")
image_upload_auth.change(fn=crop_face_to_112x112, inputs=image_upload_auth, outputs=[image_input_auth,selectedImagePath_auth])
with gr.Column():
prob_gallery = gr.Gallery(value=example_images_auth, columns=3)
prob_gallery.select(fn=get_selected_image_auth, inputs=None, outputs=[image_input_auth,selectedImagePath_auth])
with gr.Column():
selectedImage = gr.Image(type="pil", label="Probe facial image", interactive=False)
image_input_auth.change(fn=lambda img: img, inputs=image_input_auth, outputs=selectedImage)
with gr.Row():
gr.Markdown("### Step 2: Generate probe facial embedding.")
with gr.Row():
with gr.Column():
key_button = gr.Button("Generate embedding")
prob_emb_text = gr.JSON(label="Probe embedding")
mode = gr.State("auth")
prob_emb_path = gr.State()
key_button.click(fn=extract_emb, inputs=[image_input_auth, modelName, mode, selectedImagePath_auth], outputs=[prob_emb_text,prob_emb_path])
with gr.Row():
gr.Markdown("### Step 3: 🔀 Generate protected probe embedding.")
with gr.Row():
with gr.Column():
key_button = gr.Button("Protect")
key_status = gr.Checkbox(label="Probe embedding protected.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("encProbe"), prob_emb_path], outputs=[key_status,time_output])
with gr.Column():
key_button = gr.Button("Display")
output_text = gr.Text(label="Protected embedding", lines=3, interactive=False)
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("printProbe"), gr.State("print")], outputs=output_text)
with gr.Row():
gr.Markdown("### Step 4: 🔒 Run encrypted biometric search.")
with gr.Row():
with gr.Column():
key_button = gr.Button("Biometric search under FHE")
key_status = gr.Checkbox(label="Search decision encrypted.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("search")], outputs=[key_status,time_output])
with gr.Column():
key_button = gr.Button("Display")
output_text = gr.Text(label="Encrypted scores", lines=3, interactive=False)
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("printEncScores"), gr.State("print")], outputs=output_text)
with gr.Row():
gr.Markdown("### Step 5: 🔑 Decrypt scores and make a decision.")
with gr.Row():
gr.Markdown("### Set the recognition threshold.")
with gr.Row():
slider_threshold = gr.Slider(-512*5, 512*5, step=1, value=133, label="Decision threshold", info="The higher the stricter.", interactive=True)
number_threshold = gr.Textbox(visible=False, value = '133')
slider_threshold.change(fn=lambda x: x, inputs=slider_threshold, outputs=number_threshold)
with gr.Row():
key_button = gr.Button("Decrypt and Decide")
with gr.Row():
with gr.Column(scale=1):
key_status = gr.Checkbox(label="Recognition decision encrypted.", value=False)
time_output = gr.HTML()
with gr.Column(scale=1):
final_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/search.bin"), securityLevel, gr.State("decDecisionClear"), number_threshold, gr.State("styledPrint")], outputs=[key_status, time_output, final_output])
with gr.Column(scale=1):
image_output_auth = gr.Image(label="Probe", sources="upload")
image_input_auth.change(fn=display_image, inputs=image_input_auth, outputs=image_output_auth)
btn = gr.Button("Display Reference DB", scale=0)
with gr.Column(scale=1):
output_gallery = gr.Gallery(label="Reference DB",columns=3)
btn.click(display_enrolled_image, None, output_gallery)
demo.launch()