Jun Xiong
commited on
Commit
·
c25b09f
1
Parent(s):
b6a6a97
add
Browse files- Dashboard_Sample.png +0 -0
- README.md +53 -12
- app.py +130 -0
- requirements.txt +4 -0
- supermarkt_sales.xlsx +0 -0
Dashboard_Sample.png
ADDED
![]() |
README.md
CHANGED
@@ -1,12 +1,53 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Interactive Dashboard with Python – Streamlit
|
3 |
+
|
4 |
+
Sales Dashboard built-in Python and the Streamlit library to visualize Excel data.
|
5 |
+
|
6 |
+
## Video Tutorial
|
7 |
+
[](https://youtu.be/Sb0A9i6d320)
|
8 |
+
|
9 |
+
## Run the app
|
10 |
+
```Powershell
|
11 |
+
# vanilla terminal
|
12 |
+
streamlit run app.py
|
13 |
+
|
14 |
+
# quit
|
15 |
+
ctrl-c
|
16 |
+
```
|
17 |
+
|
18 |
+
## Demo
|
19 |
+
Sales Dashboard: https://www.salesdashboard.pythonandvba.com/
|
20 |
+
|
21 |
+
## Screenshot
|
22 |
+

|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
## 🤓 Check Out My Excel Add-ins
|
27 |
+
I've developed some handy Excel add-ins that you might find useful:
|
28 |
+
|
29 |
+
- 📊 **[Dashboard Add-in](https://pythonandvba.com/grafly)**: Easily create interactive and visually appealing dashboards.
|
30 |
+
- 🎨 **[Cartoon Charts Add-In](https://pythonandvba.com/cuteplots)**: Create engaging and fun cartoon-style charts.
|
31 |
+
- 🤪 **[Emoji Add-in](https://pythonandvba.com/emojify)**: Add a touch of fun to your spreadsheets with emojis.
|
32 |
+
- 🛠️ **[MyToolBelt Add-in](https://pythonandvba.com/mytoolbelt)**: A versatile toolbelt for Excel, featuring:
|
33 |
+
- Creation of Pandas DataFrames and Jupyter Notebooks from Excel ranges
|
34 |
+
- ChatGPT integration for advanced data analysis
|
35 |
+
- And much more!
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## 🤝 Connect with Me
|
40 |
+
- 📺 **YouTube:** [CodingIsFun](https://youtube.com/c/CodingIsFun)
|
41 |
+
- 🌐 **Website:** [PythonAndVBA](https://pythonandvba.com)
|
42 |
+
- 💬 **Discord:** [Join our Community](https://pythonandvba.com/discord)
|
43 |
+
- 💼 **LinkedIn:** [Sven Bosau](https://www.linkedin.com/in/sven-bosau/)
|
44 |
+
- 📸 **Instagram:** [Follow me](https://www.instagram.com/sven_bosau/)
|
45 |
+
|
46 |
+
## ☕️ Support My Work
|
47 |
+
Love my content and want to show appreciation? Why not [buy me a coffee](https://pythonandvba.com/coffee-donation) to fuel my creative engine? Your support means the world to me! 😊
|
48 |
+
|
49 |
+
[](https://pythonandvba.com/coffee-donation)
|
50 |
+
|
51 |
+
## 💌 Feedback
|
52 |
+
Got some thoughts or suggestions? Don't hesitate to reach out to me at [email protected]. I'd love to hear from you! 💡
|
53 |
+

|
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @Email: [email protected]
|
2 |
+
# @Website: https://pythonandvba.com
|
3 |
+
# @YouTube: https://youtube.com/c/CodingIsFun
|
4 |
+
# @Project: Sales Dashboard w/ Streamlit
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
import pandas as pd # pip install pandas openpyxl
|
9 |
+
import plotly.express as px # pip install plotly-express
|
10 |
+
import streamlit as st # pip install streamlit
|
11 |
+
|
12 |
+
# emojis: https://www.webfx.com/tools/emoji-cheat-sheet/
|
13 |
+
st.set_page_config(page_title="Sales Dashboard", page_icon=":bar_chart:", layout="wide")
|
14 |
+
|
15 |
+
# ---- READ EXCEL ----
|
16 |
+
@st.cache_data
|
17 |
+
def get_data_from_excel():
|
18 |
+
df = pd.read_excel(
|
19 |
+
io="supermarkt_sales.xlsx",
|
20 |
+
engine="openpyxl",
|
21 |
+
sheet_name="Sales",
|
22 |
+
skiprows=3,
|
23 |
+
usecols="B:R",
|
24 |
+
nrows=1000,
|
25 |
+
)
|
26 |
+
# Add 'hour' column to dataframe
|
27 |
+
df["hour"] = pd.to_datetime(df["Time"], format="%H:%M:%S").dt.hour
|
28 |
+
return df
|
29 |
+
|
30 |
+
df = get_data_from_excel()
|
31 |
+
|
32 |
+
# ---- SIDEBAR ----
|
33 |
+
st.sidebar.header("Please Filter Here:")
|
34 |
+
city = st.sidebar.multiselect(
|
35 |
+
"Select the City:",
|
36 |
+
options=df["City"].unique(),
|
37 |
+
default=df["City"].unique()
|
38 |
+
)
|
39 |
+
|
40 |
+
customer_type = st.sidebar.multiselect(
|
41 |
+
"Select the Customer Type:",
|
42 |
+
options=df["Customer_type"].unique(),
|
43 |
+
default=df["Customer_type"].unique(),
|
44 |
+
)
|
45 |
+
|
46 |
+
gender = st.sidebar.multiselect(
|
47 |
+
"Select the Gender:",
|
48 |
+
options=df["Gender"].unique(),
|
49 |
+
default=df["Gender"].unique()
|
50 |
+
)
|
51 |
+
|
52 |
+
df_selection = df.query(
|
53 |
+
"City == @city & Customer_type ==@customer_type & Gender == @gender"
|
54 |
+
)
|
55 |
+
|
56 |
+
# Check if the dataframe is empty:
|
57 |
+
if df_selection.empty:
|
58 |
+
st.warning("No data available based on the current filter settings!")
|
59 |
+
st.stop() # This will halt the app from further execution.
|
60 |
+
|
61 |
+
# ---- MAINPAGE ----
|
62 |
+
st.title(":bar_chart: Sales Dashboard")
|
63 |
+
st.markdown("##")
|
64 |
+
|
65 |
+
# TOP KPI's
|
66 |
+
total_sales = int(df_selection["Total"].sum())
|
67 |
+
average_rating = round(df_selection["Rating"].mean(), 1)
|
68 |
+
star_rating = ":star:" * int(round(average_rating, 0))
|
69 |
+
average_sale_by_transaction = round(df_selection["Total"].mean(), 2)
|
70 |
+
|
71 |
+
left_column, middle_column, right_column = st.columns(3)
|
72 |
+
with left_column:
|
73 |
+
st.subheader("Total Sales:")
|
74 |
+
st.subheader(f"US $ {total_sales:,}")
|
75 |
+
with middle_column:
|
76 |
+
st.subheader("Average Rating:")
|
77 |
+
st.subheader(f"{average_rating} {star_rating}")
|
78 |
+
with right_column:
|
79 |
+
st.subheader("Average Sales Per Transaction:")
|
80 |
+
st.subheader(f"US $ {average_sale_by_transaction}")
|
81 |
+
|
82 |
+
st.markdown("""---""")
|
83 |
+
|
84 |
+
# SALES BY PRODUCT LINE [BAR CHART]
|
85 |
+
sales_by_product_line = df_selection.groupby(by=["Product line"])[["Total"]].sum().sort_values(by="Total")
|
86 |
+
fig_product_sales = px.bar(
|
87 |
+
sales_by_product_line,
|
88 |
+
x="Total",
|
89 |
+
y=sales_by_product_line.index,
|
90 |
+
orientation="h",
|
91 |
+
title="<b>Sales by Product Line</b>",
|
92 |
+
color_discrete_sequence=["#0083B8"] * len(sales_by_product_line),
|
93 |
+
template="plotly_white",
|
94 |
+
)
|
95 |
+
fig_product_sales.update_layout(
|
96 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
97 |
+
xaxis=(dict(showgrid=False))
|
98 |
+
)
|
99 |
+
|
100 |
+
# SALES BY HOUR [BAR CHART]
|
101 |
+
sales_by_hour = df_selection.groupby(by=["hour"])[["Total"]].sum()
|
102 |
+
fig_hourly_sales = px.bar(
|
103 |
+
sales_by_hour,
|
104 |
+
x=sales_by_hour.index,
|
105 |
+
y="Total",
|
106 |
+
title="<b>Sales by hour</b>",
|
107 |
+
color_discrete_sequence=["#0083B8"] * len(sales_by_hour),
|
108 |
+
template="plotly_white",
|
109 |
+
)
|
110 |
+
fig_hourly_sales.update_layout(
|
111 |
+
xaxis=dict(tickmode="linear"),
|
112 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
113 |
+
yaxis=(dict(showgrid=False)),
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
left_column, right_column = st.columns(2)
|
118 |
+
left_column.plotly_chart(fig_hourly_sales, use_container_width=True)
|
119 |
+
right_column.plotly_chart(fig_product_sales, use_container_width=True)
|
120 |
+
|
121 |
+
|
122 |
+
# ---- HIDE STREAMLIT STYLE ----
|
123 |
+
hide_st_style = """
|
124 |
+
<style>
|
125 |
+
#MainMenu {visibility: hidden;}
|
126 |
+
footer {visibility: hidden;}
|
127 |
+
header {visibility: hidden;}
|
128 |
+
</style>
|
129 |
+
"""
|
130 |
+
st.markdown(hide_st_style, unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openpyxl
|
2 |
+
pandas==2.0.1
|
3 |
+
plotly==5.13.1
|
4 |
+
streamlit==1.25.0
|
supermarkt_sales.xlsx
ADDED
Binary file (125 kB). View file
|
|