# @Email: contact@pythonandvba.com # @Website: https://pythonandvba.com # @YouTube: https://youtube.com/c/CodingIsFun # @Project: Sales Dashboard w/ Streamlit import pandas as pd # pip install pandas openpyxl import plotly.express as px # pip install plotly-express import streamlit as st # pip install streamlit # emojis: https://www.webfx.com/tools/emoji-cheat-sheet/ st.set_page_config(page_title="Sales Dashboard", page_icon=":bar_chart:", layout="wide") # ---- READ EXCEL ---- @st.cache_data def get_data_from_excel(): df = pd.read_excel( io="supermarkt_sales.xlsx", engine="openpyxl", sheet_name="Sales", skiprows=3, usecols="B:R", nrows=1000, ) # Add 'hour' column to dataframe df["hour"] = pd.to_datetime(df["Time"], format="%H:%M:%S").dt.hour return df df = get_data_from_excel() # ---- SIDEBAR ---- st.sidebar.header("Please Filter Here:") city = st.sidebar.multiselect( "Select the City:", options=df["City"].unique(), default=df["City"].unique() ) customer_type = st.sidebar.multiselect( "Select the Customer Type:", options=df["Customer_type"].unique(), default=df["Customer_type"].unique(), ) gender = st.sidebar.multiselect( "Select the Gender:", options=df["Gender"].unique(), default=df["Gender"].unique() ) df_selection = df.query( "City == @city & Customer_type ==@customer_type & Gender == @gender" ) # Check if the dataframe is empty: if df_selection.empty: st.warning("No data available based on the current filter settings!") st.stop() # This will halt the app from further execution. # ---- MAINPAGE ---- st.title(":bar_chart: Sales Dashboard") st.markdown("##") # TOP KPI's total_sales = int(df_selection["Total"].sum()) average_rating = round(df_selection["Rating"].mean(), 1) star_rating = ":star:" * int(round(average_rating, 0)) average_sale_by_transaction = round(df_selection["Total"].mean(), 2) left_column, middle_column, right_column = st.columns(3) with left_column: st.subheader("Total Sales:") st.subheader(f"US $ {total_sales:,}") with middle_column: st.subheader("Average Rating:") st.subheader(f"{average_rating} {star_rating}") with right_column: st.subheader("Average Sales Per Transaction:") st.subheader(f"US $ {average_sale_by_transaction}") st.markdown("""---""") # SALES BY PRODUCT LINE [BAR CHART] sales_by_product_line = df_selection.groupby(by=["Product line"])[["Total"]].sum().sort_values(by="Total") fig_product_sales = px.bar( sales_by_product_line, x="Total", y=sales_by_product_line.index, orientation="h", title="Sales by Product Line", color_discrete_sequence=["#0083B8"] * len(sales_by_product_line), template="plotly_white", ) fig_product_sales.update_layout( plot_bgcolor="rgba(0,0,0,0)", xaxis=(dict(showgrid=False)) ) # SALES BY HOUR [BAR CHART] sales_by_hour = df_selection.groupby(by=["hour"])[["Total"]].sum() fig_hourly_sales = px.bar( sales_by_hour, x=sales_by_hour.index, y="Total", title="Sales by hour", color_discrete_sequence=["#0083B8"] * len(sales_by_hour), template="plotly_white", ) fig_hourly_sales.update_layout( xaxis=dict(tickmode="linear"), plot_bgcolor="rgba(0,0,0,0)", yaxis=(dict(showgrid=False)), ) left_column, right_column = st.columns(2) left_column.plotly_chart(fig_hourly_sales, use_container_width=True) right_column.plotly_chart(fig_product_sales, use_container_width=True) # ---- HIDE STREAMLIT STYLE ---- hide_st_style = """ """ st.markdown(hide_st_style, unsafe_allow_html=True)