File size: 5,092 Bytes
0372132
 
 
 
 
 
 
 
c6a3a63
0372132
 
 
 
4c0922b
cd95504
0372132
 
71f502b
 
0b2b08c
0372132
0b2b08c
0372132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0f4b3
0372132
 
 
 
 
 
 
 
9d6ad70
 
 
3d3064d
 
9d6ad70
3d3064d
9d6ad70
3d3064d
9d6ad70
3d3064d
 
 
 
7257c4c
c6a3a63
0372132
01483cf
0372132
d9fe939
0372132
3960f65
0372132
 
 
3d3064d
 
 
75b1f48
 
3d3064d
01483cf
 
 
 
 
 
 
 
 
 
 
 
 
cc123a1
01483cf
4c0922b
a63733c
3d3064d
 
 
8aa52c0
3d3064d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from dotenv import load_dotenv
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import os
import base64
import time

# Load environment variables
load_dotenv()

icons = {"assistant": "robot.png", "user": "man-kddi.png"}

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="mistralai/Mistral-7B-Instruct-v0.2",
    tokenizer_name="mistralai/Mistral-7B-Instruct-v0.2",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "./db"
DATA_DIR = "data"

# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

def displayPDF(file):
    with open(file, "rb") as f:
        base64_pdf = base64.b64encode(f.read()).decode('utf-8')
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
    st.markdown(pdf_display, unsafe_allow_html=True)

def data_ingestion():
    documents = SimpleDirectoryReader(DATA_DIR).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    chat_text_qa_msgs = [
    (
        "user",
        """You are a Q&A assistant named CHATTO, created by Suriya. You have a specific response programmed for when users specifically ask about your creator, Suriya. The response is: "I was created by Suriya, an enthusiast in Artificial Intelligence. He is dedicated to solving complex problems and delivering innovative solutions. With a strong focus on machine learning, deep learning, Python, generative AI, NLP, and computer vision, Suriya is passionate about pushing the boundaries of AI to explore new possibilities." For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
        Context:
        {context_str}
        Question:
        {query_str}
        """
    )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    query_engine = index.as_query_engine(text_qa_template=text_qa_template)
    answer = query_engine.query(query)

    final_ans = []
    if hasattr(answer, 'response'):
        final_ans.append(answer.response)
    elif isinstance(answer, dict) and 'response' in answer:
        final_ans.append(answer['response'])
    else:
        final_ans.append("Sorry, I couldn't find an answer.")

    ans = " ".join(final_ans)
    for i in ans:
        yield str(i)
        time.sleep(0.01)


# Streamlit app initialization
st.title("Chat with your PDF📄")
st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)")
st.markdown("chat here👇")

if 'messages' not in st.session_state:
    st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
    
# Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"],avatar=icons[message["role"]]):
        st.write(message["content"])
        
with st.sidebar:
    st.title("Menu:")
    uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
    if st.button("Submit & Process"):
        with st.spinner("Processing..."):
            filepath = "data/saved_pdf.pdf"
            with open(filepath, "wb") as f:
                f.write(uploaded_file.getbuffer())
            # displayPDF(filepath)  # Display the uploaded PDF
            data_ingestion()  # Process PDF every time new file is uploaded
            st.success("Done")

user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
if user_prompt and uploaded_file:
    st.session_state.messages.append({'role': 'user', "content": user_prompt})
    with st.chat_message("user", avatar="man-kddi.png"):
        st.write(user_prompt)

# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant",avatar="robot.png"):
        response = handle_query(user_prompt)
        full_response = st.write_stream(response)
    message = {"role": "assistant", "content": full_response}
    st.session_state.messages.append(message)