Spaces:
Sleeping
Sleeping
File size: 5,092 Bytes
0372132 c6a3a63 0372132 4c0922b cd95504 0372132 71f502b 0b2b08c 0372132 0b2b08c 0372132 8b0f4b3 0372132 9d6ad70 3d3064d 9d6ad70 3d3064d 9d6ad70 3d3064d 9d6ad70 3d3064d 7257c4c c6a3a63 0372132 01483cf 0372132 d9fe939 0372132 3960f65 0372132 3d3064d 75b1f48 3d3064d 01483cf cc123a1 01483cf 4c0922b a63733c 3d3064d 8aa52c0 3d3064d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import streamlit as st
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from dotenv import load_dotenv
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import os
import base64
import time
# Load environment variables
load_dotenv()
icons = {"assistant": "robot.png", "user": "man-kddi.png"}
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="mistralai/Mistral-7B-Instruct-v0.2",
tokenizer_name="mistralai/Mistral-7B-Instruct-v0.2",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "./db"
DATA_DIR = "data"
# Ensure data directory exists
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
def displayPDF(file):
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
st.markdown(pdf_display, unsafe_allow_html=True)
def data_ingestion():
documents = SimpleDirectoryReader(DATA_DIR).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
chat_text_qa_msgs = [
(
"user",
"""You are a Q&A assistant named CHATTO, created by Suriya. You have a specific response programmed for when users specifically ask about your creator, Suriya. The response is: "I was created by Suriya, an enthusiast in Artificial Intelligence. He is dedicated to solving complex problems and delivering innovative solutions. With a strong focus on machine learning, deep learning, Python, generative AI, NLP, and computer vision, Suriya is passionate about pushing the boundaries of AI to explore new possibilities." For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document.
Context:
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
answer = query_engine.query(query)
final_ans = []
if hasattr(answer, 'response'):
final_ans.append(answer.response)
elif isinstance(answer, dict) and 'response' in answer:
final_ans.append(answer['response'])
else:
final_ans.append("Sorry, I couldn't find an answer.")
ans = " ".join(final_ans)
for i in ans:
yield str(i)
time.sleep(0.01)
# Streamlit app initialization
st.title("Chat with your PDF📄")
st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)")
st.markdown("chat here👇")
if 'messages' not in st.session_state:
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"],avatar=icons[message["role"]]):
st.write(message["content"])
with st.sidebar:
st.title("Menu:")
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
if st.button("Submit & Process"):
with st.spinner("Processing..."):
filepath = "data/saved_pdf.pdf"
with open(filepath, "wb") as f:
f.write(uploaded_file.getbuffer())
# displayPDF(filepath) # Display the uploaded PDF
data_ingestion() # Process PDF every time new file is uploaded
st.success("Done")
user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
if user_prompt and uploaded_file:
st.session_state.messages.append({'role': 'user', "content": user_prompt})
with st.chat_message("user", avatar="man-kddi.png"):
st.write(user_prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant",avatar="robot.png"):
response = handle_query(user_prompt)
full_response = st.write_stream(response)
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message) |