import streamlit as st from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os from youtube_transcript_api import YouTubeTranscriptApi import shutil import time # Load environment variables load_dotenv() icons = {"assistant": "robot.png", "user": "man-kddi.png"} # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="mistralai/Mistral-7B-Instruct-v0.2", tokenizer_name="mistralai/Mistral-7B-Instruct-v0.2", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def displayPDF(file): with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') pdf_display = f'' st.markdown(pdf_display, unsafe_allow_html=True) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() print(documents) storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents,show_progress=True) index.storage_context.persist(persist_dir=PERSIST_DIR) def extract_transcript_details(youtube_video_url): try: video_id=youtube_video_url.split("=")[1] transcript_text=YouTubeTranscriptApi.get_transcript(video_id) transcript = "" for i in transcript_text: transcript += " " + i["text"] return transcript except Exception as e: st.error(e) def remove_old_files(): # Specify the directory path you want to clear directory_path = "data" # Remove all files and subdirectories in the specified directory shutil.rmtree(directory_path) # Recreate an empty directory if needed os.makedirs(directory_path) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are a Q&A assistant named CHATTO, created by Suriya. your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) final_ans = [] if hasattr(answer, 'response'): final_ans.append(answer.response) elif isinstance(answer, dict) and 'response' in answer: final_ans.append(answer['response']) else: final_ans.append("Sorry, I couldn't find an answer.") ans = " ".join(final_ans) for i in ans: yield str(i) time.sleep(0.01) # Streamlit app initialization st.title("Chat with your PDF📄") st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)") st.markdown("chat here👇") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] # Display or clear chat messages for message in st.session_state.messages: with st.chat_message(message["role"],avatar=icons[message["role"]]): st.write(message["content"]) with st.sidebar: st.title("Menu:") uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") video_url = st.text_input("Enter Youtube Video Link: ") if st.button("Submit & Process"): with st.spinner("Processing..."): if len(os.listdir("data")) !=0: remove_old_files() if uploaded_file: filepath = "data/saved_pdf.pdf" with open(filepath, "wb") as f: f.write(uploaded_file.getbuffer()) if video_url: extracted_text = extract_transcript_details(video_url) with open("data/saved_text.txt", "w") as file: file.write(extracted_text) data_ingestion() # Process PDF every time new file is uploaded st.success("Done") user_prompt = st.chat_input("Ask me anything about the content of the PDF:") if user_prompt and (video_url or uploaded_file): st.session_state.messages.append({'role': 'user', "content": user_prompt}) with st.chat_message("user", avatar="man-kddi.png"): st.write(user_prompt) # Generate a new response if last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant",avatar="robot.png"): response = handle_query(user_prompt) full_response = st.write_stream(response) message = {"role": "assistant", "content": full_response} st.session_state.messages.append(message)