import streamlit as st from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate from llama_index.llms.huggingface import HuggingFaceInferenceAPI from dotenv import load_dotenv from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import os from youtube_transcript_api import YouTubeTranscriptApi import shutil import time # Load environment variables load_dotenv() icons = {"assistant": "robot.png", "user": "man-kddi.png"} # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="mistralai/Mistral-7B-Instruct-v0.2", tokenizer_name="mistralai/Mistral-7B-Instruct-v0.2", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "./db" DATA_DIR = "data" # Ensure data directory exists os.makedirs(DATA_DIR, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) def displayPDF(file): with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') pdf_display = f'' st.markdown(pdf_display, unsafe_allow_html=True) def data_ingestion(): documents = SimpleDirectoryReader(DATA_DIR).load_data() print(documents) storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents,show_progress=True) index.storage_context.persist(persist_dir=PERSIST_DIR) def extract_transcript_details(youtube_video_url): try: video_id=youtube_video_url.split("=")[1] transcript_text=YouTubeTranscriptApi.get_transcript(video_id) transcript = "" for i in transcript_text: transcript += " " + i["text"] return transcript except Exception as e: st.error(e) def remove_old_files(): # Specify the directory path you want to clear directory_path = "data" # Remove all files and subdirectories in the specified directory shutil.rmtree(directory_path) # Recreate an empty directory if needed os.makedirs(directory_path) def handle_query(query): storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) chat_text_qa_msgs = [ ( "user", """You are a Q&A assistant named CHATTO, created by Suriya. You have a specific response programmed for when users specifically ask about your creator, Suriya. The response is: "I was created by Suriya, an enthusiast in Artificial Intelligence. He is dedicated to solving complex problems and delivering innovative solutions. With a strong focus on machine learning, deep learning, Python, generative AI, NLP, and computer vision, Suriya is passionate about pushing the boundaries of AI to explore new possibilities." For all other inquiries, your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) query_engine = index.as_query_engine(text_qa_template=text_qa_template) answer = query_engine.query(query) final_ans = [] if hasattr(answer, 'response'): final_ans.append(answer.response) elif isinstance(answer, dict) and 'response' in answer: final_ans.append(answer['response']) else: final_ans.append("Sorry, I couldn't find an answer.") ans = " ".join(final_ans) for i in ans: yield str(i) time.sleep(0.01) # Streamlit app initialization st.title("Chat with your PDF📄") st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)") st.markdown("chat here👇") if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] # Display or clear chat messages for message in st.session_state.messages: with st.chat_message(message["role"],avatar=icons[message["role"]]): st.write(message["content"]) with st.sidebar: st.title("Menu:") uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") video_url = st.text_input("Enter Youtube Video Link: ") if st.button("Submit & Process"): with st.spinner("Processing..."): if len(os.listdir("data")) !=0: remove_old_files() if uploaded_file: filepath = "data/saved_pdf.pdf" with open(filepath, "wb") as f: f.write(uploaded_file.getbuffer()) if video_url: extracted_text = extract_transcript_details(video_url) with open("data/saved_text.txt", "w") as file: file.write(extracted_text) data_ingestion() # Process PDF every time new file is uploaded st.success("Done") user_prompt = st.chat_input("Ask me anything about the content of the PDF:") if user_prompt and uploaded_file: st.session_state.messages.append({'role': 'user', "content": user_prompt}) with st.chat_message("user", avatar="man-kddi.png"): st.write(user_prompt) # Generate a new response if last message is not from assistant if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant",avatar="robot.png"): response = handle_query(user_prompt) full_response = st.write_stream(response) message = {"role": "assistant", "content": full_response} st.session_state.messages.append(message)