Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from streamlit_chat import message | |
from PyPDF2 import PdfReader | |
import bs4 | |
import time | |
import google.generativeai as genai | |
from langchain.prompts import PromptTemplate | |
from langchain import LLMChain | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import nest_asyncio | |
from langchain.document_loaders import WebBaseLoader | |
nest_asyncio.apply() | |
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY") | |
genai.configure(api_key=os.environ["GOOGLE_API_KEY"]) | |
llm = ChatGoogleGenerativeAI(model="gemini-pro", | |
temperature=0.4) | |
template = """You are GenXai, a friendly chatbot created by Suriya, an AI enthusiast. Your goal is to assist users by providing relevant information from both general knowledge and provided documents. | |
If the user asks about a specific document, try to use the extracted text from that document in your response. If the question is not related to any specific document, rely on your general knowledge. If the user asks about a link, respond with the extracted text from that link. | |
Conversation Context: | |
Chat History: {chat_history} | |
Provided Documents: {provided_docs} | |
Extracted Text from Links: {extracted_text} | |
User: {user_question} | |
GenXai: | |
""" | |
prompt = PromptTemplate( | |
input_variables=["chat_history", "provided_docs", "extracted_text", "user_question"], | |
template=template | |
) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=prompt, | |
verbose=True, | |
) | |
previous_response = "" | |
provided_docs = "" | |
extracted_text = "" | |
def conversational_chat(query): | |
global previous_response, provided_docs,extracted_text | |
for i in st.session_state['history']: | |
if i is not None: | |
previous_response += f"User: {i[0]}\n Chatto: {i[1]}\n" | |
provided_docs = "".join(st.session_state["docs"]) | |
extracted_text = "".join(st.session_state["extracted_text"]) | |
result = llm_chain.predict( | |
chat_history=previous_response, | |
user_question=query, | |
provided_docs=provided_docs, | |
extracted_text=extracted_text | |
) | |
st.session_state['history'].append((query, result)) | |
return result | |
st.title("GenXai- Generative Xpert AI ") | |
st.text("I am GenXai Your Friendly Assitant") | |
# st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)") | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'docs' not in st.session_state: | |
st.session_state['docs'] = [] | |
if "extracted_text" not in st.session_state: | |
st.session_state["extracted_text"] = [] | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def response_streaming(text): | |
for i in text: | |
yield i | |
time.sleep(0.001) | |
def get_url_text(url_link): | |
try: | |
loader = WebBaseLoader(url_link) | |
loader.requests_per_second = 1 | |
docs = loader.aload() | |
extracted_text = "" | |
for page in docs: | |
extracted_text += page.page_content | |
return extracted_text | |
except Exception as e: | |
print(f"Error fetching or processing URL: {e}") | |
return "" | |
with st.sidebar: | |
st.title("Add a file for GenXai memory:") | |
uploaded_files = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) | |
uploaded_url = st.text_input("Please upload a URL:") | |
if st.button("Submit & Process"): | |
if uploaded_files or uploaded_url: | |
with st.spinner("Processing..."): | |
if uploaded_files: | |
pdf_text = get_pdf_text(uploaded_files) | |
st.session_state["docs"] += get_pdf_text(uploaded_files) | |
if uploaded_url: | |
url_text = get_url_text(uploaded_url) | |
st.session_state["extracted_text"] += get_url_text(uploaded_url) | |
st.success("Processing complete!") | |
else: | |
st.error("Please upload at least one PDF file or provide a URL.") | |
if 'messages' not in st.session_state: | |
st.session_state.messages = [{'role': 'assistant', "content": "I'm Here to help you questions"}] | |
for message in st.session_state.messages: | |
with st.chat_message(message['role']): | |
st.write(message['content']) | |
user_input = st.chat_input("Ask Your Questions 👉..") | |
if user_input: | |
st.session_state.messages.append({'role': 'user', "content": user_input}) | |
with st.chat_message("user"): | |
st.write(user_input) | |
with st.spinner("Thinking..."): | |
response = conversational_chat(user_input) | |
# stream = response_streaming(response) | |
with st.chat_message("assistant"): | |
full_response = st.write_stream(response_streaming(response)) | |
message = {"role": "assistant", "content": response} | |
st.session_state.messages.append(message) |