suriya7 commited on
Commit
29002d7
·
verified ·
1 Parent(s): f366e0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -8
app.py CHANGED
@@ -1,25 +1,29 @@
1
  import streamlit as st
2
  import os
3
  from streamlit_chat import message
 
4
  import google.generativeai as genai
5
  from langchain.prompts import PromptTemplate
6
  from langchain import LLMChain
7
  from langchain_google_genai import ChatGoogleGenerativeAI
8
 
 
9
  genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
10
 
11
  llm = ChatGoogleGenerativeAI(model="gemini-pro",
12
- temperature=0.7)
13
 
14
 
15
- template = """You are a friendly chatbot called "CRETA" who give clear an well having a conversation with a human and you are created by suriya an AI Enthusiastic.
 
 
16
  previous_chat:
17
  {chat_history}
18
  Human: {human_input}
19
  Chatbot:"""
20
 
21
  prompt = PromptTemplate(
22
- input_variables=["chat_history", "human_input"], template=template
23
  )
24
 
25
  llm_chain = LLMChain(
@@ -30,17 +34,23 @@ llm_chain = LLMChain(
30
 
31
 
32
  previous_response = ""
 
33
  def conversational_chat(query):
34
- global previous_response
35
  for i in st.session_state['history']:
36
  if i is not None:
37
  previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}"
38
- print(previous_response)
39
- result = llm_chain.predict(chat_history=previous_response, human_input=query)
 
 
 
 
40
  st.session_state['history'].append((query, result))
41
  return result
42
 
43
- st.title("ASSISTANT BOT:")
 
44
 
45
  if 'history' not in st.session_state:
46
  st.session_state['history'] = []
@@ -52,6 +62,26 @@ if 'generated' not in st.session_state:
52
  if 'past' not in st.session_state:
53
  st.session_state['past'] = [" "]
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  # Create containers for chat history and user input
56
  response_container = st.container()
57
  container = st.container()
@@ -64,7 +94,8 @@ with container:
64
  # answer = response_generator(output)
65
  st.session_state['past'].append(user_input)
66
  st.session_state['generated'].append(output)
67
-
 
68
  # Display chat history
69
  if st.session_state['generated']:
70
  with response_container:
 
1
  import streamlit as st
2
  import os
3
  from streamlit_chat import message
4
+ from PyPDF2 import PdfReader
5
  import google.generativeai as genai
6
  from langchain.prompts import PromptTemplate
7
  from langchain import LLMChain
8
  from langchain_google_genai import ChatGoogleGenerativeAI
9
 
10
+ os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
11
  genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
12
 
13
  llm = ChatGoogleGenerativeAI(model="gemini-pro",
14
+ temperature=0.4)
15
 
16
 
17
+ template = """You are a friendly chat assistant called "CRETA" having a conversation with a human and you are created by Pachaiappan an AI Specialist.
18
+ provided document:
19
+ {provided_docs}
20
  previous_chat:
21
  {chat_history}
22
  Human: {human_input}
23
  Chatbot:"""
24
 
25
  prompt = PromptTemplate(
26
+ input_variables=["chat_history", "human_input", "provided_docs"], template=template
27
  )
28
 
29
  llm_chain = LLMChain(
 
34
 
35
 
36
  previous_response = ""
37
+ provided_docs = ""
38
  def conversational_chat(query):
39
+ global previous_response, provided_docs
40
  for i in st.session_state['history']:
41
  if i is not None:
42
  previous_response += f"Human: {i[0]}\n Chatbot: {i[1]}"
43
+ docs = ""
44
+ for j in st.session_state["docs"]:
45
+ if j is not None:
46
+ docs += j
47
+ provided_docs = docs
48
+ result = llm_chain.predict(chat_history=previous_response, human_input=query, provided_docs=provided_docs)
49
  st.session_state['history'].append((query, result))
50
  return result
51
 
52
+ st.title("Chat Bot:")
53
+ st.text("I am CRETA Your Friendly Assitant")
54
 
55
  if 'history' not in st.session_state:
56
  st.session_state['history'] = []
 
62
  if 'past' not in st.session_state:
63
  st.session_state['past'] = [" "]
64
 
65
+ if 'docs' not in st.session_state:
66
+ st.session_state['docs'] = []
67
+
68
+ def get_pdf_text(pdf_docs):
69
+ text = ""
70
+ for pdf in pdf_docs:
71
+ pdf_reader = PdfReader(pdf)
72
+ for page in pdf_reader.pages:
73
+ text += page.extract_text()
74
+ return text
75
+
76
+ with st.sidebar:
77
+ st.title("Add a file for CRETA memory:")
78
+ uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
79
+ uploaded_url = st.text_area("please upload an url..")
80
+ if st.button("Submit & Process"):
81
+ with st.spinner("Processing..."):
82
+ st.session_state["docs"] += get_pdf_text(uploaded_file)
83
+ st.success("Done")
84
+
85
  # Create containers for chat history and user input
86
  response_container = st.container()
87
  container = st.container()
 
94
  # answer = response_generator(output)
95
  st.session_state['past'].append(user_input)
96
  st.session_state['generated'].append(output)
97
+
98
+
99
  # Display chat history
100
  if st.session_state['generated']:
101
  with response_container: