Spaces:
Running
on
Zero
Running
on
Zero
import einops | |
from diffusers import StableDiffusionXLPipeline, IFPipeline | |
from typing import List, Dict, Callable, Union | |
import torch | |
from .hooked_scheduler import HookedNoiseScheduler | |
def retrieve(io): | |
if isinstance(io, tuple): | |
if len(io) == 1: | |
return io[0] | |
else: | |
raise ValueError("A tuple should have length of 1") | |
elif isinstance(io, torch.Tensor): | |
return io | |
else: | |
raise ValueError("Input/Output must be a tensor, or 1-element tuple") | |
class HookedDiffusionAbstractPipeline: | |
parent_cls = None | |
pipe = None | |
def __init__(self, pipe: parent_cls, use_hooked_scheduler: bool = False): | |
if use_hooked_scheduler: | |
pipe.scheduler = HookedNoiseScheduler(pipe.scheduler) | |
self.__dict__['pipe'] = pipe | |
self.use_hooked_scheduler = use_hooked_scheduler | |
def from_pretrained(cls, *args, **kwargs): | |
return cls(cls.parent_cls.from_pretrained(*args, **kwargs)) | |
def run_with_hooks(self, | |
*args, | |
position_hook_dict: Dict[str, Union[Callable, List[Callable]]], | |
**kwargs | |
): | |
''' | |
Run the pipeline with hooks at specified positions. | |
Returns the final output. | |
Args: | |
*args: Arguments to pass to the pipeline. | |
position_hook_dict: A dictionary mapping positions to hooks. | |
The keys are positions in the pipeline where the hooks should be registered. | |
The values are either a single hook or a list of hooks to be registered at the specified position. | |
Each hook should be a callable that takes three arguments: (module, input, output). | |
**kwargs: Keyword arguments to pass to the pipeline. | |
''' | |
hooks = [] | |
for position, hook in position_hook_dict.items(): | |
if isinstance(hook, list): | |
for h in hook: | |
hooks.append(self._register_general_hook(position, h)) | |
else: | |
hooks.append(self._register_general_hook(position, hook)) | |
hooks = [hook for hook in hooks if hook is not None] | |
try: | |
output = self.pipe(*args, **kwargs) | |
finally: | |
for hook in hooks: | |
hook.remove() | |
if self.use_hooked_scheduler: | |
self.pipe.scheduler.pre_hooks = [] | |
self.pipe.scheduler.post_hooks = [] | |
return output | |
def run_with_cache(self, | |
*args, | |
positions_to_cache: List[str], | |
save_input: bool = False, | |
save_output: bool = True, | |
**kwargs | |
): | |
''' | |
Run the pipeline with caching at specified positions. | |
This method allows you to cache the intermediate inputs and/or outputs of the pipeline | |
at certain positions. The final output of the pipeline and a dictionary of cached values | |
are returned. | |
Args: | |
*args: Arguments to pass to the pipeline. | |
positions_to_cache (List[str]): A list of positions in the pipeline where intermediate | |
inputs/outputs should be cached. | |
save_input (bool, optional): If True, caches the input at each specified position. | |
Defaults to False. | |
save_output (bool, optional): If True, caches the output at each specified position. | |
Defaults to True. | |
**kwargs: Keyword arguments to pass to the pipeline. | |
Returns: | |
final_output: The final output of the pipeline after execution. | |
cache_dict (Dict[str, Dict[str, Any]]): A dictionary where keys are the specified positions | |
and values are dictionaries containing the cached 'input' and/or 'output' at each position, | |
depending on the flags `save_input` and `save_output`. | |
''' | |
cache_input, cache_output = dict() if save_input else None, dict() if save_output else None | |
hooks = [ | |
self._register_cache_hook(position, cache_input, cache_output) for position in positions_to_cache | |
] | |
hooks = [hook for hook in hooks if hook is not None] | |
output = self.pipe(*args, **kwargs) | |
for hook in hooks: | |
hook.remove() | |
if self.use_hooked_scheduler: | |
self.pipe.scheduler.pre_hooks = [] | |
self.pipe.scheduler.post_hooks = [] | |
cache_dict = {} | |
if save_input: | |
for position, block in cache_input.items(): | |
cache_input[position] = torch.stack(block, dim=1) | |
cache_dict['input'] = cache_input | |
if save_output: | |
for position, block in cache_output.items(): | |
cache_output[position] = torch.stack(block, dim=1) | |
cache_dict['output'] = cache_output | |
return output, cache_dict | |
def run_with_hooks_and_cache(self, | |
*args, | |
position_hook_dict: Dict[str, Union[Callable, List[Callable]]], | |
positions_to_cache: List[str] = [], | |
save_input: bool = False, | |
save_output: bool = True, | |
**kwargs | |
): | |
''' | |
Run the pipeline with hooks and caching at specified positions. | |
This method allows you to register hooks at certain positions in the pipeline and | |
cache intermediate inputs and/or outputs at specified positions. Hooks can be used | |
for inspecting or modifying the pipeline's execution, and caching stores intermediate | |
values for later inspection or use. | |
Args: | |
*args: Arguments to pass to the pipeline. | |
position_hook_dict Dict[str, Union[Callable, List[Callable]]]: | |
A dictionary where the keys are the positions in the pipeline, and the values | |
are hooks (either a single hook or a list of hooks) to be registered at those positions. | |
Each hook should be a callable that accepts three arguments: (module, input, output). | |
positions_to_cache (List[str], optional): A list of positions in the pipeline where | |
intermediate inputs/outputs should be cached. Defaults to an empty list. | |
save_input (bool, optional): If True, caches the input at each specified position. | |
Defaults to False. | |
save_output (bool, optional): If True, caches the output at each specified position. | |
Defaults to True. | |
**kwargs: Additional keyword arguments to pass to the pipeline. | |
Returns: | |
final_output: The final output of the pipeline after execution. | |
cache_dict (Dict[str, Dict[str, Any]]): A dictionary where keys are the specified positions | |
and values are dictionaries containing the cached 'input' and/or 'output' at each position, | |
depending on the flags `save_input` and `save_output`. | |
''' | |
cache_input, cache_output = dict() if save_input else None, dict() if save_output else None | |
hooks = [ | |
self._register_cache_hook(position, cache_input, cache_output) for position in positions_to_cache | |
] | |
for position, hook in position_hook_dict.items(): | |
if isinstance(hook, list): | |
for h in hook: | |
hooks.append(self._register_general_hook(position, h)) | |
else: | |
hooks.append(self._register_general_hook(position, hook)) | |
hooks = [hook for hook in hooks if hook is not None] | |
output = self.pipe(*args, **kwargs) | |
for hook in hooks: | |
hook.remove() | |
if self.use_hooked_scheduler: | |
self.pipe.scheduler.pre_hooks = [] | |
self.pipe.scheduler.post_hooks = [] | |
cache_dict = {} | |
if save_input: | |
for position, block in cache_input.items(): | |
cache_input[position] = torch.stack(block, dim=1) | |
cache_dict['input'] = cache_input | |
if save_output: | |
for position, block in cache_output.items(): | |
cache_output[position] = torch.stack(block, dim=1) | |
cache_dict['output'] = cache_output | |
return output, cache_dict | |
def _locate_block(self, position: str): | |
''' | |
Locate the block at the specified position in the pipeline. | |
''' | |
block = self.pipe | |
for step in position.split('.'): | |
if step.isdigit(): | |
step = int(step) | |
block = block[step] | |
else: | |
block = getattr(block, step) | |
return block | |
def _register_cache_hook(self, position: str, cache_input: Dict, cache_output: Dict): | |
if position.endswith('$self_attention') or position.endswith('$cross_attention'): | |
return self._register_cache_attention_hook(position, cache_output) | |
if position == 'noise': | |
def hook(model_output, timestep, sample, generator): | |
if position not in cache_output: | |
cache_output[position] = [] | |
cache_output[position].append(sample) | |
if self.use_hooked_scheduler: | |
self.pipe.scheduler.post_hooks.append(hook) | |
else: | |
raise ValueError('Cannot cache noise without using hooked scheduler') | |
return | |
block = self._locate_block(position) | |
def hook(module, input, kwargs, output): | |
if cache_input is not None: | |
if position not in cache_input: | |
cache_input[position] = [] | |
cache_input[position].append(retrieve(input)) | |
if cache_output is not None: | |
if position not in cache_output: | |
cache_output[position] = [] | |
cache_output[position].append(retrieve(output)) | |
return block.register_forward_hook(hook, with_kwargs=True) | |
def _register_cache_attention_hook(self, position, cache): | |
attn_block = self._locate_block(position.split('$')[0]) | |
if position.endswith('$self_attention'): | |
attn_block = attn_block.attn1 | |
elif position.endswith('$cross_attention'): | |
attn_block = attn_block.attn2 | |
else: | |
raise ValueError('Wrong attention type') | |
def hook(module, args, kwargs, output): | |
hidden_states = args[0] | |
encoder_hidden_states = kwargs['encoder_hidden_states'] | |
attention_mask = kwargs['attention_mask'] | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn_block.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
query = attn_block.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn_block.norm_cross is not None: | |
encoder_hidden_states = attn_block.norm_cross(encoder_hidden_states) | |
key = attn_block.to_k(encoder_hidden_states) | |
value = attn_block.to_v(encoder_hidden_states) | |
query = attn_block.head_to_batch_dim(query) | |
key = attn_block.head_to_batch_dim(key) | |
value = attn_block.head_to_batch_dim(value) | |
attention_probs = attn_block.get_attention_scores(query, key, attention_mask) | |
attention_probs = attention_probs.view( | |
batch_size, | |
attention_probs.shape[0] // batch_size, | |
attention_probs.shape[1], | |
attention_probs.shape[2] | |
) | |
if position not in cache: | |
cache[position] = [] | |
cache[position].append(attention_probs) | |
return attn_block.register_forward_hook(hook, with_kwargs=True) | |
def _register_general_hook(self, position, hook): | |
if position == 'scheduler_pre': | |
if not self.use_hooked_scheduler: | |
raise ValueError('Cannot register hooks on scheduler without using hooked scheduler') | |
self.pipe.scheduler.pre_hooks.append(hook) | |
return | |
elif position == 'scheduler_post': | |
if not self.use_hooked_scheduler: | |
raise ValueError('Cannot register hooks on scheduler without using hooked scheduler') | |
self.pipe.scheduler.post_hooks.append(hook) | |
return | |
block = self._locate_block(position) | |
return block.register_forward_hook(hook) | |
def to(self, *args, **kwargs): | |
self.pipe = self.pipe.to(*args, **kwargs) | |
return self | |
def __getattr__(self, name): | |
return getattr(self.pipe, name) | |
def __setattr__(self, name, value): | |
return setattr(self.pipe, name, value) | |
def __call__(self, *args, **kwargs): | |
return self.pipe(*args, **kwargs) | |
class HookedStableDiffusionXLPipeline(HookedDiffusionAbstractPipeline): | |
parent_cls = StableDiffusionXLPipeline | |
class HookedIFPipeline(HookedDiffusionAbstractPipeline): | |
parent_cls = IFPipeline | |