import gradio as gr import os import torch from PIL import Image from SDLens import HookedStableDiffusionXLPipeline from SAE import SparseAutoencoder from utils import add_feature_on_area import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from utils import add_feature_on_area, replace_with_feature import threading code_to_block = { "down.2.1": "unet.down_blocks.2.attentions.1", "mid.0": "unet.mid_block.attentions.0", "up.0.1": "unet.up_blocks.0.attentions.1", "up.0.0": "unet.up_blocks.0.attentions.0" } lock = threading.Lock() def process_cache(cache, saes_dict): top_features_dict = {} sparse_maps_dict = {} for code in code_to_block.keys(): block = code_to_block[code] sae = saes_dict[code] diff = cache["output"][block] - cache["input"][block] diff = diff.permute(0, 1, 3, 4, 2).squeeze(0).squeeze(0) with torch.no_grad(): sparse_maps = sae.encode(diff) averages = torch.mean(sparse_maps, dim=(0, 1)) top_features = torch.topk(averages, 10).indices top_features_dict[code] = top_features.cpu().tolist() sparse_maps_dict[code] = sparse_maps.cpu().numpy() return top_features_dict, sparse_maps_dict def plot_image_heatmap(cache, block_select, radio): code = block_select.split()[0] feature = int(radio) block = code_to_block[code] heatmap = cache["heatmaps"][code][:, :, feature] heatmap = np.kron(heatmap, np.ones((32, 32))) image = cache["image"].convert("RGBA") jet = plt.cm.jet cmap = jet(np.arange(jet.N)) cmap[:1, -1] = 0 cmap[1:, -1] = 0.6 cmap = ListedColormap(cmap) heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap)) heatmap_rgba = cmap(heatmap) heatmap_image = Image.fromarray((heatmap_rgba * 255).astype(np.uint8)) heatmap_with_transparency = Image.alpha_composite(image, heatmap_image) return heatmap_with_transparency def create_prompt_part(pipe, saes_dict, demo): def image_gen(prompt): lock.acquire() try: images, cache = pipe.run_with_cache( prompt, positions_to_cache=list(code_to_block.values()), num_inference_steps=1, generator=torch.Generator(device="cpu").manual_seed(42), guidance_scale=0.0, save_input=True, save_output=True ) finally: lock.release() top_features_dict, top_sparse_maps_dict = process_cache(cache, saes_dict) return images.images[0], { "image": images.images[0], "heatmaps": top_sparse_maps_dict, "features": top_features_dict } def update_radio(cache, block_select): code = block_select.split()[0] return gr.update(choices=cache["features"][code]) def update_img(cache, block_select, radio): new_img = plot_image_heatmap(cache, block_select, radio) return new_img with gr.Tab("Explore", elem_classes="tabs") as explore_tab: cache = gr.State(value={ "image": None, "heatmaps": None, "features": [] }) with gr.Row(): with gr.Column(scale=7): with gr.Row(equal_height=True): prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party and eathing a dish with peas.") button = gr.Button("Generate", elem_classes="generate_button1") with gr.Row(): image = gr.Image(width=512, height=512, image_mode="RGB", label="Generated image") with gr.Column(scale=4): block_select = gr.Dropdown( choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"], value="down.2.1 (composition)", label="Select block", elem_id="block_select", interactive=True ) radio = gr.Radio(choices=[], label="Select a feature", interactive=True) button.click(image_gen, [prompt_field], outputs=[image, cache]) cache.change(update_radio, [cache, block_select], outputs=[radio]) block_select.select(update_radio, [cache, block_select], outputs=[radio]) radio.select(update_img, [cache, block_select, radio], outputs=[image]) demo.load(image_gen, [prompt_field], outputs=[image, cache]) return explore_tab def downsample_mask(image, factor): downsampled = image.reshape( (image.shape[0] // factor, factor, image.shape[1] // factor, factor) ) downsampled = downsampled.mean(axis=(1, 3)) return downsampled def create_intervene_part(pipe: HookedStableDiffusionXLPipeline, saes_dict, means_dict, demo): def image_gen(prompt, num_steps): lock.acquire() try: images = pipe.run_with_hooks( prompt, position_hook_dict={}, num_inference_steps=num_steps, generator=torch.Generator(device="cpu").manual_seed(42), guidance_scale=0.0 ) finally: lock.release() return images.images[0] def image_mod(prompt, block_str, brush_index, strength, num_steps, input_image): block = block_str.split(" ")[0] mask = (input_image["layers"][0] > 0)[:, :, -1].astype(float) mask = downsample_mask(mask, 32) mask = torch.tensor(mask, dtype=torch.float32, device="cuda") if mask.sum() == 0: gr.Info("No mask selected, please draw on the input image") def hook(module, input, output): return add_feature_on_area( saes_dict[block], brush_index, mask * means_dict[block][brush_index] * strength, module, input, output ) lock.acquire() try: image = pipe.run_with_hooks( prompt, position_hook_dict={code_to_block[block]: hook}, num_inference_steps=num_steps, generator=torch.Generator(device="cpu").manual_seed(42), guidance_scale=0.0 ).images[0] finally: lock.release() return image def feature_icon(block_str, brush_index): block = block_str.split(" ")[0] if block in ["mid.0", "up.0.0"]: gr.Info("Note that Feature Icon works best with down.2.1 and up.0.1 blocks but feel free to explore", duration=3) def hook(module, input, output): return replace_with_feature( saes_dict[block], brush_index, means_dict[block][brush_index] * saes_dict[block].k, module, input, output ) lock.acquire() try: image = pipe.run_with_hooks( "", position_hook_dict={code_to_block[block]: hook}, num_inference_steps=1, generator=torch.Generator(device="cpu").manual_seed(42), guidance_scale=0.0 ).images[0] finally: lock.release() return image with gr.Tab("Paint!", elem_classes="tabs") as intervene_tab: image_state = gr.State(value=None) with gr.Row(): with gr.Column(scale=3): # Generation column with gr.Row(): # prompt and num_steps prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A dog plays with a ball, cartoon", elem_id="prompt_input") num_steps = gr.Number(value=1, label="Number of steps", minimum=1, maximum=4, elem_id="num_steps", precision=0) with gr.Row(): # Generate button button_generate = gr.Button("Generate", elem_id="generate_button") with gr.Column(scale=3): # Intervention column with gr.Row(): # dropdowns and number inputs with gr.Column(scale=7): with gr.Row(): block_select = gr.Dropdown( choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"], value="down.2.1 (composition)", label="Select block", elem_id="block_select" ) brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, elem_id="brush_index", precision=0) with gr.Row(): button_icon = gr.Button('Feature Icon', elem_id="feature_icon_button") with gr.Column(scale=3): with gr.Row(): strength = gr.Number(value=10, label="Strength", minimum=-40, maximum=40, elem_id="strength", precision=2) with gr.Row(): button = gr.Button('Apply', elem_id="apply_button") with gr.Row(): with gr.Column(): # Input image i_image = gr.Sketchpad( height=610, layers=False, transforms=[], placeholder="Generate and paint!", brush=gr.Brush(default_size=64, color_mode="fixed", colors=['black']), container=False, canvas_size=(512, 512), label="Input Image") clear_button = gr.Button("Clear") clear_button.click(lambda x: x, [image_state], [i_image]) # Output image o_image = gr.Image(width=512, height=512, label="Output Image") # Set up the click events button_generate.click(image_gen, inputs=[prompt_field, num_steps], outputs=[image_state]) image_state.change(lambda x: x, [image_state], [i_image]) button.click(image_mod, inputs=[prompt_field, block_select, brush_index, strength, num_steps, i_image], outputs=o_image) button_icon.click(feature_icon, inputs=[block_select, brush_index], outputs=o_image) demo.load(image_gen, [prompt_field, num_steps], outputs=[image_state]) return intervene_tab def create_top_images_part(demo): def update_top_images(block_select, brush_index): block = block_select.split(" ")[0] url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{brush_index}.jpg" return url with gr.Tab("Top Images", elem_classes="tabs") as top_images_tab: with gr.Row(): block_select = gr.Dropdown( choices=["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"], value="down.2.1 (composition)", label="Select block" ) brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=5119, precision=0) with gr.Row(): image = gr.Image(width=600, height=600, label="Top Images") block_select.select(update_top_images, [block_select, brush_index], outputs=[image]) brush_index.change(update_top_images, [block_select, brush_index], outputs=[image]) demo.load(update_top_images, [block_select, brush_index], outputs=[image]) return top_images_tab def create_intro_part(): with gr.Tab("Instructions", elem_classes="tabs") as intro_tab: gr.Markdown( '''# Unpacking SDXL Turbo with Sparse Autoencoders ## Demo Overview This demo showcases the use of Sparse Autoencoders (SAEs) to understand the features learned by the Stable Diffusion XL Turbo model. ## How to Use ### Explore * Enter a prompt in the text box and click on the "Generate" button to generate an image. * You can observe the active features in different blocks plot on top of the generated image. ### Top Images * For each feature, you can view the top images that activate the feature the most. ### Paint! * Generate an image using the prompt. * Paint on the generated image to apply interventions. * Use the "Feature Icon" button to understand how the selected brush functions. ### Remarks * Not all brushes mix well with all images. Experiment with different brushes and strengths. * Feature Icon works best with `down.2.1 (composition)` and `up.0.1 (style)` blocks. * This demo is provided for research purposes only. We do not take responsibility for the content generated by the demo. ### Interesting features to try To get started, try the following features: - down.2.1 (composition): 2301 (evil) 3747 (image frame) 4998 (cartoon) - up.0.1 (style): 4977 (tiger stripes) 90 (fur) 2615 (twilight blur) ''' ) return intro_tab def create_demo(pipe, saes_dict, means_dict): custom_css = """ .tabs button { font-size: 20px !important; /* Adjust font size for tab text */ padding: 10px !important; /* Adjust padding to make the tabs bigger */ font-weight: bold !important; /* Adjust font weight to make the text bold */ } .generate_button1 { max-width: 160px !important; margin-top: 20px !important; margin-bottom: 20px !important; } """ with gr.Blocks(css=custom_css) as demo: with create_intro_part(): pass with create_prompt_part(pipe, saes_dict, demo): pass with create_top_images_part(demo): pass with create_intervene_part(pipe, saes_dict, means_dict, demo): pass return demo if __name__ == "__main__": import os import gradio as gr import torch from SDLens import HookedStableDiffusionXLPipeline from SAE import SparseAutoencoder dtype=torch.float32 pipe = HookedStableDiffusionXLPipeline.from_pretrained( 'stabilityai/sdxl-turbo', torch_dtype=dtype, device_map="balanced", variant=("fp16" if dtype==torch.float16 else None) ) pipe.set_progress_bar_config(disable=True) path_to_checkpoints = './checkpoints/' code_to_block = { "down.2.1": "unet.down_blocks.2.attentions.1", "mid.0": "unet.mid_block.attentions.0", "up.0.1": "unet.up_blocks.0.attentions.1", "up.0.0": "unet.up_blocks.0.attentions.0" } saes_dict = {} means_dict = {} for code, block in code_to_block.items(): sae = SparseAutoencoder.load_from_disk( os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final"), ) means = torch.load( os.path.join(path_to_checkpoints, f"{block}_k10_hidden5120_auxk256_bs4096_lr0.0001", "final", "mean.pt"), weights_only=True ) saes_dict[code] = sae.to('cuda', dtype=dtype) means_dict[code] = means.to('cuda', dtype=dtype) demo = create_demo(pipe, saes_dict, means_dict) demo.launch()