File size: 6,625 Bytes
f13531e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline, HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
import re

def load_doc(list_file_path, chunk_size=600, chunk_overlap=40):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = [page for loader in loaders for page in loader.load()]
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=client,
        collection_name=collection_name,
    )
    return vectordb

def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()):
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        temperature=0.7,
        max_new_tokens=1024,
        top_k=3,
    )
    memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
    retriever = vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50]
    if len(collection_name) < 3:
        collection_name += 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    return collection_name

def initialize_database(list_file_obj, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    collection_name = create_collection_name(list_file_path[0])
    doc_splits = load_doc(list_file_path)
    vector_db = create_db(doc_splits, collection_name)
    return vector_db, collection_name, "Complete!"

def initialize_LLM(llm_model, vector_db, progress=gr.Progress()):
    qa_chain = initialize_llmchain(llm_model, vector_db, progress)
    return qa_chain, "Complete!"

def conversation(qa_chain, message, history):
    formatted_chat_history = [(f"User: {user_message}", f"Assistant: {bot_message}") for user_message, bot_message in history]
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if "Helpful Answer:" in response_answer:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
            """<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
            <h3>Ask any questions about your PDF documents, along with follow-ups</h3>
            <b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents.
            When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.
            <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
            """)

        with gr.Tab("Step 1 - Document pre-processing"):
            document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generate vector database...")

        with gr.Tab("Step 2 - QA chain initialization"):
            llm_btn = gr.Radio(["mistralai/Mistral-7B-Instruct-v0.2"], label="LLM models", value="mistralai/Mistral-7B-Instruct-v0.2", type="index", info="Choose your LLM model")
            with gr.Row():
                llm_progress = gr.Textbox(value="None", label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize question-answering chain...")

        with gr.Tab("Step 3 - Conversation with chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit")
                clear_btn = gr.ClearButton([msg, chatbot])

        db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, inputs=[llm_btn, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False)

        msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
        submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False)

    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()