pdf-chat / app.py
surprisedPikachu007's picture
Create app.py
f13531e verified
raw
history blame
6.63 kB
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline, HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
import re
def load_doc(list_file_path, chunk_size=600, chunk_overlap=40):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = [page for loader in loaders for page in loader.load()]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=client,
collection_name=collection_name,
)
return vectordb
def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()):
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=0.7,
max_new_tokens=1024,
top_k=3,
)
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50]
if len(collection_name) < 3:
collection_name += 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
def initialize_database(list_file_obj, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
collection_name = create_collection_name(list_file_path[0])
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits, collection_name)
return vector_db, collection_name, "Complete!"
def initialize_LLM(llm_model, vector_db, progress=gr.Progress()):
qa_chain = initialize_llmchain(llm_model, vector_db, progress)
return qa_chain, "Complete!"
def conversation(qa_chain, message, history):
formatted_chat_history = [(f"User: {user_message}", f"Assistant: {bot_message}") for user_message, bot_message in history]
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents.
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
""")
with gr.Tab("Step 1 - Document pre-processing"):
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
with gr.Row():
db_progress = gr.Textbox(label="Vector database initialization", value="None")
with gr.Row():
db_btn = gr.Button("Generate vector database...")
with gr.Tab("Step 2 - QA chain initialization"):
llm_btn = gr.Radio(["mistralai/Mistral-7B-Instruct-v0.2"], label="LLM models", value="mistralai/Mistral-7B-Instruct-v0.2", type="index", info="Choose your LLM model")
with gr.Row():
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
with gr.Row():
qachain_btn = gr.Button("Initialize question-answering chain...")
with gr.Tab("Step 3 - Conversation with chatbot"):
chatbot = gr.Chatbot(height=300)
with gr.Row():
msg = gr.Textbox(placeholder="Type message", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot])
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, collection_name, db_progress])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False)
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()