import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline, HuggingFaceEndpoint from langchain.memory import ConversationBufferMemory from pathlib import Path import chromadb import re def load_doc(list_file_path, chunk_size=600, chunk_overlap=40): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [page for loader in loaders for page in loader.load()] text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=client, collection_name=collection_name, ) return vectordb def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()): llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=0.7, max_new_tokens=1024, top_k=3, ) memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50] if len(collection_name) < 3: collection_name += 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' return collection_name def initialize_database(list_file_obj, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] collection_name = create_collection_name(list_file_path[0]) doc_splits = load_doc(list_file_path) vector_db = create_db(doc_splits, collection_name) return vector_db, collection_name, "Complete!" def initialize_LLM(llm_model, vector_db, progress=gr.Progress()): qa_chain = initialize_llmchain(llm_model, vector_db, progress) return qa_chain, "Complete!" def conversation(qa_chain, message, history): formatted_chat_history = [(f"User: {user_message}", f"Assistant: {bot_message}") for user_message, bot_message in history] response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if "Helpful Answer:" in response_answer: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """