import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline, HuggingFaceEndpoint from langchain.memory import ConversationBufferMemory from pathlib import Path import chromadb import re def load_doc(list_file_path, chunk_size=600, chunk_overlap=40): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [page for loader in loaders for page in loader.load()] text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=client, collection_name=collection_name, ) return vectordb def initialize_llmchain(llm_model, vector_db, progress=gr.Progress()): llm = HuggingFaceEndpoint( repo_id=llm_model, temperature=0.7, max_new_tokens=1024, top_k=3, ) memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50] if len(collection_name) < 3: collection_name += 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' return collection_name def initialize_database(list_file_obj, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] collection_name = create_collection_name(list_file_path[0]) doc_splits = load_doc(list_file_path) vector_db = create_db(doc_splits, collection_name) return vector_db, collection_name, "Complete!" def initialize_LLM(llm_model, vector_db, progress=gr.Progress()): qa_chain = initialize_llmchain(llm_model, vector_db, progress) return qa_chain, "Complete!" def conversation(qa_chain, message, history): formatted_chat_history = [(f"User: {user_message}", f"Assistant: {bot_message}") for user_message, bot_message in history] response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if "Helpful Answer:" in response_answer: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

PDF-based chatbot (powered by LangChain and open-source LLMs)

Ask any questions about your PDF documents, along with follow-ups

Note: This AI assistant performs retrieval-augmented generation from your PDF documents. When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.
Warning: This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.
""") with gr.Tab("Step 1 - Document pre-processing"): document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") with gr.Row(): db_progress = gr.Textbox(label="Vector database initialization", value="None") with gr.Row(): db_btn = gr.Button("Generate vector database...") with gr.Tab("Step 2 - QA chain initialization"): llm_btn = gr.Radio(["mistralai/Mistral-7B-Instruct-v0.2"], label="LLM models", value="mistralai/Mistral-7B-Instruct-v0.2", type="index", info="Choose your LLM model") with gr.Row(): llm_progress = gr.Textbox(value="None", label="QA chain initialization") with gr.Row(): qachain_btn = gr.Button("Initialize question-answering chain...") with gr.Tab("Step 3 - Conversation with chatbot"): chatbot = gr.Chatbot(height=300) with gr.Row(): msg = gr.Textbox(placeholder="Type message", container=True) with gr.Row(): submit_btn = gr.Button("Submit") clear_btn = gr.ClearButton([msg, chatbot]) db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, collection_name, db_progress]) qachain_btn.click(initialize_LLM, inputs=[llm_btn, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False) msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False) submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False) clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False) demo.queue().launch(debug=True) if __name__ == "__main__": demo()