File size: 28,901 Bytes
6a34fd4
 
 
 
 
 
5c72fe4
 
 
 
 
 
6a34fd4
 
 
 
5c72fe4
6a34fd4
 
 
 
 
 
5c72fe4
 
 
6a34fd4
5c72fe4
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
 
 
 
5c72fe4
 
 
 
6a34fd4
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
 
 
5c72fe4
 
 
 
 
 
 
6a34fd4
 
 
 
 
5c72fe4
6a34fd4
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
5c72fe4
 
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
5c72fe4
 
 
6a34fd4
 
5c72fe4
6a34fd4
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
5c72fe4
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
import torch
from torch.utils.data import Dataset
import pandas as pd
import numpy as np
import tqdm
import random
<<<<<<< HEAD
from .vocab import Vocab
import pickle
import copy
# from sklearn.preprocessing import OneHotEncoder
=======
from vocab import Vocab
import pickle
import copy
from sklearn.preprocessing import OneHotEncoder
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896

class PretrainerDataset(Dataset):
    """
        Class name: PretrainDataset
        
    """
<<<<<<< HEAD
    def __init__(self, dataset_path, vocab, seq_len=30, max_mask=0.15):
=======
    def __init__(self, dataset_path, vocab, seq_len=30, select_next_seq= False):
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
        self.dataset_path = dataset_path
        self.vocab = vocab # Vocab object
        
        # Related to input dataset file
        self.lines = []
        self.index_documents = {}

        seq_len_list = []
        with open(self.dataset_path, "r") as reader:
            i = 0
            index = 0
            self.index_documents[i] = []
            for line in tqdm.tqdm(reader.readlines()):
                if line:
                    line = line.strip()
                    if not line:
                        i+=1
                        self.index_documents[i] = []
                    else:
                        self.index_documents[i].append(index)
<<<<<<< HEAD
                        self.lines.append(line.split("\t"))
                        len_line = len(line.split("\t"))
                        seq_len_list.append(len_line)
                        index+=1
            reader.close()
        print("Sequence Stats: len: %s, min: %s, max: %s, average: %s"% (len(seq_len_list),
              min(seq_len_list), max(seq_len_list), sum(seq_len_list)/len(seq_len_list)))
        print("Unique Sequences: ", len({tuple(ll) for ll in self.lines}))
        self.index_documents = {k:v for k,v in self.index_documents.items() if v}
        print(len(self.index_documents))
        self.seq_len = seq_len
        print("Sequence length set at: ", self.seq_len)
        self.max_mask = max_mask
        print("% of input tokens selected for masking : ",self.max_mask)
=======
                        self.lines.append(line.split())
                        len_line = len(line.split())
                        seq_len_list.append(len_line)
                        index+=1
            reader.close()
        print("Sequence Stats: ", len(seq_len_list), min(seq_len_list), max(seq_len_list), sum(seq_len_list)/len(seq_len_list))
        print("Unique Sequences: ", len({tuple(ll) for ll in self.lines}))
        self.index_documents = {k:v for k,v in self.index_documents.items() if v}
        self.seq_len = seq_len
        self.max_mask_per_seq = 0.15
        self.select_next_seq = select_next_seq
        print("Sequence length set at ", self.seq_len)
        print("select_next_seq: ", self.select_next_seq)
        print(len(self.index_documents))
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896

    
    def __len__(self):
        return len(self.lines)
    
    def __getitem__(self, item):
        token_a = self.lines[item]
<<<<<<< HEAD
        # sa_masked = None
        # sa_masked_label = None
        # token_b = None
        # is_same_student = None
        # sb_masked = None
        # sb_masked_label = None
        
        # if self.select_next_seq:
        #     is_same_student, token_b = self.get_token_b(item)
        #     is_same_student = 1 if is_same_student else 0
        #     token_a1, token_b1 = self.truncate_to_max_seq(token_a, token_b)
        #     sa_masked, sa_masked_label = self.random_mask_seq(token_a1)
        #     sb_masked, sb_masked_label = self.random_mask_seq(token_b1)
        # else:
        token_a = token_a[:self.seq_len-2]
        sa_masked, sa_masked_label, sa_masked_pos = self.random_mask_seq(token_a)

        s1 = ([self.vocab.vocab['[CLS]']] + sa_masked + [self.vocab.vocab['[SEP]']])
        s1_label = ([self.vocab.vocab['[PAD]']] + sa_masked_label + [self.vocab.vocab['[PAD]']])
        segment_label = [1 for _ in range(len(s1))]
        masked_pos = ([0] + sa_masked_pos + [0])
        
        # if self.select_next_seq:
        #     s1 = s1 + sb_masked + [self.vocab.vocab['[SEP]']]
        #     s1_label = s1_label + sb_masked_label + [self.vocab.vocab['[PAD]']]
        #     segment_label = segment_label + [2 for _ in range(len(sb_masked)+1)]
        
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding)
        s1_label.extend(padding)
        segment_label.extend(padding)
        masked_pos.extend(padding)
 
        output = {'bert_input': s1,
                 'bert_label': s1_label,
                 'segment_label': segment_label,
                 'masked_pos': masked_pos}
        # print(f"tokenA: {token_a}")
        # print(f"output: {output}")
        
        # if self.select_next_seq:
        #     output['is_same_student'] = is_same_student
        
        # print(item, len(s1), len(s1_label), len(segment_label))
        # print(f"{item}.")
=======
        token_b = None
        is_same_student = None
        sa_masked = None
        sa_masked_label = None
        sb_masked = None
        sb_masked_label = None
        
        if self.select_next_seq:
            is_same_student, token_b = self.get_token_b(item)
            is_same_student = 1 if is_same_student else 0
            token_a1, token_b1 = self.truncate_to_max_seq(token_a, token_b)
            sa_masked, sa_masked_label = self.random_mask_seq(token_a1)
            sb_masked, sb_masked_label = self.random_mask_seq(token_b1)
        else:
            token_a = token_a[:self.seq_len-2]
            sa_masked, sa_masked_label = self.random_mask_seq(token_a)
        
        s1 = ([self.vocab.vocab['[CLS]']] + sa_masked + [self.vocab.vocab['[SEP]']])
        s1_label = ([self.vocab.vocab['[PAD]']] + sa_masked_label + [self.vocab.vocab['[PAD]']])
        segment_label = [1 for _ in range(len(s1))]
        
        if self.select_next_seq:
            s1 = s1 + sb_masked + [self.vocab.vocab['[SEP]']]
            s1_label = s1_label + sb_masked_label + [self.vocab.vocab['[PAD]']]
            segment_label = segment_label + [2 for _ in range(len(sb_masked)+1)]
        
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding), s1_label.extend(padding), segment_label.extend(padding)
 
        output = {'bert_input': s1,
                 'bert_label': s1_label,
                 'segment_label': segment_label}
        
        if self.select_next_seq:
            output['is_same_student'] = is_same_student
        # print(item, len(s1), len(s1_label), len(segment_label))
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
        return {key: torch.tensor(value) for key, value in output.items()}
    
    def random_mask_seq(self, tokens):
        """
        Input: original token seq
        Output: masked token seq, output label
        """
        
<<<<<<< HEAD
        masked_pos = []
        output_labels = []
        output_tokens = copy.deepcopy(tokens)
        opt_step = False
        for i, token in enumerate(tokens):
            if token in ['OptionalTask_1', 'EquationAnswer', 'NumeratorFactor', 'DenominatorFactor', 'OptionalTask_2', 'FirstRow1:1', 'FirstRow1:2', 'FirstRow2:1', 'FirstRow2:2', 'SecondRow', 'ThirdRow']:
                opt_step = True
            # if opt_step:
            #     prob = random.random()
            #     if prob < self.max_mask:
            #         output_tokens[i] = random.choice([3,7,8,9,11,12,13,14,15,16,22,23,24,25,26,27,30,31,32])
            #         masked_pos.append(1)
            #     else:
            #         output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
            #         masked_pos.append(0)
            #     output_labels.append(self.vocab.vocab.get(token, self.vocab.vocab['[UNK]']))
            #     opt_step = False
            # else:    
            prob = random.random()
            if prob < self.max_mask:
=======
        # masked_pos_label = {}
        output_labels = []
        output_tokens = copy.deepcopy(tokens)
        
        # while(len(label_tokens) < self.max_mask_per_seq*len(tokens)):
        for i, token in enumerate(tokens):
            prob = random.random()
            if prob < 0.15:
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
             # chooses 15% of token positions at random
                # prob /= 0.15
                prob = random.random()
                if prob < 0.8: #[MASK] token 80% of the time
                    output_tokens[i] = self.vocab.vocab['[MASK]']
<<<<<<< HEAD
                    masked_pos.append(1)
                elif prob < 0.9: # a random token 10% of the time 
                    # print(".......0.8-0.9......")
                    if opt_step:
                        output_tokens[i] = random.choice([7,8,9,11,12,13,14,15,16,22,23,24,25,26,27,30,31,32])
                        opt_step = False
                    else:
                        output_tokens[i] = random.randint(1, len(self.vocab.vocab)-1)
                    masked_pos.append(1)
                else: # the unchanged i-th token 10% of the time
                    # print(".......unchanged......")
                    output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
                    masked_pos.append(0)
=======
                elif prob < 0.9: # a random token 10% of the time 
                    # print(".......0.8-0.9......")
                    output_tokens[i] = random.randint(1, len(self.vocab.vocab)-1)
                else: # the unchanged i-th token 10% of the time
                    # print(".......unchanged......")
                    output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
                # True Label
                output_labels.append(self.vocab.vocab.get(token, self.vocab.vocab['[UNK]']))
                # masked_pos_label[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
            else:
                # i-th token with original value
                output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
                # Padded label
                output_labels.append(self.vocab.vocab['[PAD]'])
<<<<<<< HEAD
                masked_pos.append(0)
=======
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
        # label_position = []
        # label_tokens = []
        # for k, v in masked_pos_label.items():
        #     label_position.append(k)
        #     label_tokens.append(v)
<<<<<<< HEAD
        return  output_tokens, output_labels, masked_pos
    
#     def get_token_b(self, item):
#         document_id = [k for k,v in self.index_documents.items() if item in v][0]
#         random_document_id = document_id
        
#         if random.random() < 0.5:
#             document_ids = [k for k in self.index_documents.keys() if k != document_id]
#             random_document_id = random.choice(document_ids) 

#         same_student = (random_document_id == document_id)
        
#         nex_seq_list = self.index_documents.get(random_document_id)

#         if same_student:
#             if len(nex_seq_list) != 1:
#                 nex_seq_list = [v for v in nex_seq_list if v !=item]

#         next_seq = random.choice(nex_seq_list)
#         tokens = self.lines[next_seq]
#         # print(f"item = {item}, tokens: {tokens}")
#         # print(f"item={item}, next={next_seq}, same_student = {same_student}, {document_id} == {random_document_id}, b. {tokens}")
#         return same_student, tokens

#     def truncate_to_max_seq(self, s1, s2):
#         sa = copy.deepcopy(s1)
#         sb = copy.deepcopy(s1)
#         total_allowed_seq = self.seq_len - 3
        
#         while((len(sa)+len(sb)) > total_allowed_seq):
#             if random.random() < 0.5:
#                 sa.pop()
#             else:
#                 sb.pop()
#         return sa, sb
            
=======
        return  output_tokens, output_labels
    
    def get_token_b(self, item):
        document_id = [k for k,v in self.index_documents.items() if item in v][0]
        random_document_id = document_id
        
        if random.random() < 0.5:
            document_ids = [k for k in self.index_documents.keys() if k != document_id]
            random_document_id = random.choice(document_ids) 

        same_student = (random_document_id == document_id)
        
        nex_seq_list = self.index_documents.get(random_document_id)

        if same_student:
            if len(nex_seq_list) != 1:
                nex_seq_list = [v for v in nex_seq_list if v !=item]

        next_seq = random.choice(nex_seq_list)
        tokens = self.lines[next_seq]
        # print(f"item = {item}, tokens: {tokens}")
        # print(f"item={item}, next={next_seq}, same_student = {same_student}, {document_id} == {random_document_id}, b. {tokens}")
        return same_student, tokens

    def truncate_to_max_seq(self, s1, s2):
        sa = copy.deepcopy(s1)
        sb = copy.deepcopy(s1)
        total_allowed_seq = self.seq_len - 3
        
        while((len(sa)+len(sb)) > total_allowed_seq):
            if random.random() < 0.5:
                sa.pop()
            else:
                sb.pop()
        return sa, sb
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
                
class TokenizerDataset(Dataset):
    """
        Class name: TokenizerDataset
        Tokenize the data in the dataset
        
    """
<<<<<<< HEAD
    def __init__(self, dataset_path, label_path, vocab, seq_len=30):
        self.dataset_path = dataset_path
        self.label_path = label_path
        self.vocab = vocab # Vocab object
        # self.encoder = OneHotEncoder(sparse=False)
=======
    def __init__(self, dataset_path, label_path, vocab, seq_len=30, train=True):
        self.dataset_path = dataset_path
        self.label_path = label_path
        self.vocab = vocab # Vocab object
        self.encoder = OneHotEncoder(sparse_output=False)
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
        
        # Related to input dataset file
        self.lines = []
        self.labels = []
<<<<<<< HEAD
        self.feats = []
        if self.label_path:
            self.label_file = open(self.label_path, "r")
            for line in self.label_file:
                if line:
                    line = line.strip()
                    if not line:
                        continue
                    self.labels.append(int(line))
            self.label_file.close()
            
            # Comment this section if you are not using feat attribute
            try:
                j = 0
                dataset_info_file = open(self.label_path.replace("label", "info"), "r")
                for line in dataset_info_file:
                    if line:
                        line = line.strip()
                        if not line:
                            continue
                      
                        # # highGRschool_w_prior
                        # feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        
                        # highGRschool_w_prior_w_diffskill_wo_fa
                        feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
                        feat_vec.extend(feat2[1:])
                        
                        # # highGRschool_w_prior_w_p_diffskill_wo_fa
                        # feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        # feat2 = [-float(i) for i in line.split(",")[-2].split("\t")]
                        # feat_vec.extend(feat2[1:])
                        
#                         # highGRschool_w_prior_w_diffskill_0fa_skill
#                         feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
#                         feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
#                         fa_feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        
#                         diff_skill = [f2 if f1==0 else 0 for f2, f1 in zip(feat2, fa_feat_vec)]
#                         feat_vec.extend(diff_skill)
                         
                        if j == 0:
                            print(len(feat_vec))
                            j+=1
                        
                        # feat_vec.extend(feat2[1:])
                        # feat_vec.extend(feat2)
                        # feat_vec = [float(i) for i in line.split(",")[-2].split("\t")]
                        # feat_vec = feat_vec[1:]
                        # feat_vec = [float(line.split(",")[-1])]
                        # feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        # feat_vec = [ft-f1 for ft, f1 in zip(feat_vec, fa_feat_vec)]

                        self.feats.append(feat_vec)
                dataset_info_file.close()
            except Exception as e:
                print(e)
            # labeler = np.array([0, 1]) #np.unique(self.labels)
            # print(f"Labeler {labeler}")
            # self.encoder.fit(labeler.reshape(-1,1))
            # self.labels = self.encoder.transform(np.array(self.labels).reshape(-1,1))

        self.file = open(self.dataset_path, "r")
=======
        self.labels = []
        
        self.label_file = open(self.label_path, "r")
        for line in self.label_file:
            if line:
                line = line.strip()
                if not line:
                    continue
                self.labels.append(float(line))
        self.label_file.close()
        labeler = np.unique(self.labels)
        self.encoder.fit(labeler.reshape(-1,1))
        self.labels = self.encoder.transform(np.array(self.labels).reshape(-1,1))
        # print(f"labels: {self.labels}")
        
#         info_file_name = self.dataset_path.split('.')
#         info_file_name = info_file_name[0]+"_info."+info_file_name[1]
#         progress = []
#         with open(info_file_name, "r") as f:
#             for line in f:
#                 if line:
#                     line = line.strip()
#                     if not line:
#                         continue
#                     line = line.split(",")[0]
#                     pstat = 1 if line == "GRADUATED" else 0
#                     progress.append(pstat)
#             f.close()
            
#         indices_of_grad = np.where(np.array(progress) == 1)[0]
#         indices_of_prom = np.where(np.array(progress) == 0)[0]
        
#         indices_of_zeros = np.where(np.array(labels) == 0)[0]
#         indices_of_ones = np.where(np.array(labels) == 1)[0]
        
#         number_of_items = min(len(indices_of_zeros), len(indices_of_ones))
#         # number_of_items = min(len(indices_of_grad), len(indices_of_prom))
#         print(number_of_items)
        
#         indices_of_zeros = indices_of_zeros[:number_of_items]
#         indices_of_ones = indices_of_ones[:number_of_items]
#         print(indices_of_zeros)
#         print(indices_of_ones)
        
        # indices_of_grad = indices_of_grad[:number_of_items]
        # indices_of_prom = indices_of_prom[:number_of_items]
        # print(indices_of_grad)
        # print(indices_of_prom)

        self.file = open(self.dataset_path, "r")
        # index = 0
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
        for line in self.file:
            if line:
                line = line.strip()
                if line:
                    self.lines.append(line)
<<<<<<< HEAD
=======
                    # if train:
                    #     if index in indices_of_zeros:
                    #     # if index in indices_of_prom:
                    #         self.lines.append(line)
                    #         self.labels.append(0)
                    #     if index in indices_of_ones:
                    #     # if index in indices_of_grad:
                    #         self.lines.append(line)
                    #         self.labels.append(1)
                    # else:
                    #     self.lines.append(line)
                    #     self.labels.append(labels[index])
                        # self.labels.append(progress[index])
                    # index += 1
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
        self.file.close()             
        
        self.len = len(self.lines)
        self.seq_len = seq_len
<<<<<<< HEAD
        print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
=======
         
        print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels))
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
        
    def __len__(self):
        return self.len
    
    def __getitem__(self, item):
<<<<<<< HEAD
        org_line = self.lines[item].split("\t")
        dup_line = []
        opt = False
        for l in org_line:
            if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
                opt = True
            if opt and 'FinalAnswer-' in l: 
                dup_line.append('[UNK]')
            else:
                dup_line.append(l)
        dup_line = "\t".join(dup_line)
        # print(dup_line)
        s1 = self.vocab.to_seq(dup_line, self.seq_len) # This is like tokenizer and adds [CLS] and [SEP].
        s1_label = self.labels[item] if self.label_path else 0
        segment_label = [1 for _ in range(len(s1))]
        s1_feat = self.feats[item] if len(self.feats)>0 else 0
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding), segment_label.extend(padding)
        
        output = {'input': s1,
                 'label': s1_label,
                  'feat': s1_feat,
=======
        
        s1 = self.vocab.to_seq(self.lines[item], self.seq_len) # This is like tokenizer and adds [CLS] and [SEP].
        s1_label = self.labels[item]
        segment_label = [1 for _ in range(len(s1))]
        
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding), segment_label.extend(padding)
        
        output = {'bert_input': s1,
                 'progress_status': s1_label,
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
                 'segment_label': segment_label}
        return {key: torch.tensor(value) for key, value in output.items()}
        
        
<<<<<<< HEAD
class TokenizerDatasetForCalibration(Dataset):
    """
        Class name: TokenizerDataset
        Tokenize the data in the dataset
        
    """
    def __init__(self, dataset_path, label_path, vocab, seq_len=30):
        self.dataset_path = dataset_path
        self.label_path = label_path
        self.vocab = vocab # Vocab object
        # self.encoder = OneHotEncoder(sparse=False)
        
        # Related to input dataset file
        self.lines = []
        self.labels = []
        self.feats = []
        if self.label_path:
            self.label_file = open(self.label_path, "r")
            for line in self.label_file:
                if line:
                    line = line.strip()
                    if not line:
                        continue
                    self.labels.append(int(line))
            self.label_file.close()
            
            # Comment this section if you are not using feat attribute
            try:
                j = 0
                dataset_info_file = open(self.label_path.replace("label", "info"), "r")
                for line in dataset_info_file:
                    if line:
                        line = line.strip()
                        if not line:
                            continue
                      
                        # # highGRschool_w_prior
                        # feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        
                        # highGRschool_w_prior_w_diffskill_wo_fa
                        feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
                        feat_vec.extend(feat2[1:])
                        
#                         # highGRschool_w_prior_w_diffskill_0fa_skill
#                         feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
#                         feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
#                         fa_feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        
#                         diff_skill = [f2 if f1==0 else 0 for f2, f1 in zip(feat2, fa_feat_vec)]
#                         feat_vec.extend(diff_skill)
                         
                        if j == 0:
                            print(len(feat_vec))
                            j+=1
                        
                        # feat_vec.extend(feat2[1:])
                        # feat_vec.extend(feat2)
                        # feat_vec = [float(i) for i in line.split(",")[-2].split("\t")]
                        # feat_vec = feat_vec[1:]
                        # feat_vec = [float(line.split(",")[-1])]
                        # feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        # feat_vec = [ft-f1 for ft, f1 in zip(feat_vec, fa_feat_vec)]

                        self.feats.append(feat_vec)
                dataset_info_file.close()
            except Exception as e:
                print(e)
            # labeler = np.array([0, 1]) #np.unique(self.labels)
            # print(f"Labeler {labeler}")
            # self.encoder.fit(labeler.reshape(-1,1))
            # self.labels = self.encoder.transform(np.array(self.labels).reshape(-1,1))

        self.file = open(self.dataset_path, "r")
        for line in self.file:
            if line:
                line = line.strip()
                if line:
                    self.lines.append(line)
        self.file.close()             
        
        self.len = len(self.lines)
        self.seq_len = seq_len
        print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
        
    def __len__(self):
        return self.len
    
    def __getitem__(self, item):
        org_line = self.lines[item].split("\t")
        dup_line = []
        opt = False
        for l in org_line:
            if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
                opt = True
            if opt and 'FinalAnswer-' in l: 
                dup_line.append('[UNK]')
            else:
                dup_line.append(l)
        dup_line = "\t".join(dup_line)
        # print(dup_line)
        s1 = self.vocab.to_seq(dup_line, self.seq_len) # This is like tokenizer and adds [CLS] and [SEP].
        s1_label = self.labels[item] if self.label_path else 0
        segment_label = [1 for _ in range(len(s1))]
        s1_feat = self.feats[item] if len(self.feats)>0 else 0
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding), segment_label.extend(padding)
        
        output = {'input': s1,
                 'label': s1_label,
                  'feat': s1_feat,
                 'segment_label': segment_label}
        return ({key: torch.tensor(value) for key, value in output.items()}, s1_label)
        
        
        
        # if __name__ == "__main__":
=======
# if __name__ == "__main__":
>>>>>>> bffd3381ccb717f802fe651d4111ec0a268e3896
#     # import pickle
#     # k = pickle.load(open("dataset/CL4999_1920/unique_steps_list.pkl","rb"))
#     # print(k)
#     vocab_obj = Vocab("pretraining/vocab.txt")
#     vocab_obj.load_vocab()
#     datasetTrain = PretrainerDataset("pretraining/pretrain.txt", vocab_obj)
    
#     print(datasetTrain, len(datasetTrain))#, datasetTrain.documents_index)
#     print(datasetTrain[len(datasetTrain)-1])
#     for i, d in enumerate(datasetTrain):
#         print(d.items())
#         break
        
#     fine_tune = TokenizerDataset("finetuning/finetune.txt", "finetuning/finetune_label.txt", vocab_obj)
#     print(fine_tune)
#     print(fine_tune[len(fine_tune)-1])
#     print(fine_tune[random.randint(0, len(fine_tune))])
#     for i, d in enumerate(fine_tune):
#         print(d.items())
#         break