Spaces:
Running
Running
File size: 17,477 Bytes
6a34fd4 ee40bd7 6a34fd4 debb3aa c343cc3 6a34fd4 1922da0 5549b66 ee40bd7 5549b66 ee40bd7 5549b66 ee40bd7 5549b66 1282ae1 f2b12d8 1282ae1 f2b12d8 1282ae1 f2b12d8 1282ae1 c343cc3 1282ae1 c343cc3 1282ae1 c343cc3 5c72fe4 1282ae1 c343cc3 f2b12d8 5c72fe4 1282ae1 c343cc3 5c72fe4 ee40bd7 5e7e944 ee40bd7 445302e debb3aa 5fdf2ba debb3aa f2b12d8 debb3aa ee40bd7 debb3aa c343cc3 f2b12d8 c343cc3 3821b59 f2b12d8 c343cc3 810513c 6a34fd4 1922da0 f2b12d8 810513c 6a34fd4 bffd338 810513c bffd338 810513c bffd338 810513c bffd338 f2b12d8 810513c 6a34fd4 5549b66 1922da0 5549b66 5c72fe4 f2b12d8 1922da0 bffd338 3821b59 f2b12d8 debb3aa f2b12d8 810513c 6a34fd4 ee40bd7 810513c 1922da0 6a34fd4 bffd338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import gradio as gr
from huggingface_hub import hf_hub_download
import pickle
from gradio import Progress
import numpy as np
import subprocess
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import pandas as pd
# Define the function to process the input file and model selection
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
# progress = gr.Progress(track_tqdm=True)
progress(0, desc="Starting the processing")
# with open(file.name, 'r') as f:
# content = f.read()
# saved_test_dataset = "train.txt"
# saved_test_label = "train_label.txt"
# saved_train_info="train_info.txt"
# Save the uploaded file content to a specified location
# shutil.copyfile(file.name, saved_test_dataset)
# shutil.copyfile(label.name, saved_test_label)
# shutil.copyfile(info.name, saved_train_info)
parent_location="ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/"
test_info_location=parent_location+"fullTest/test_info.txt"
test_location=parent_location+"fullTest/test.txt"
if(model_name=="ASTRA-FT-HGR"):
finetune_task="highGRschool10"
# test_info_location=parent_location+"fullTest/test_info.txt"
# test_location=parent_location+"fullTest/test.txt"
elif(model_name== "ASTRA-FT-LGR" ):
finetune_task="lowGRschoolAll"
# test_info_location=parent_location+"lowGRschoolAll/test_info.txt"
# test_location=parent_location+"lowGRschoolAll/test.txt"
elif(model_name=="ASTRA-FT-FULL"):
# test_info_location=parent_location+"fullTest/test_info.txt"
# test_location=parent_location+"fullTest/test.txt"
finetune_task="highGRschool10"
else:
finetune_task=None
# Load the test_info file and the graduation rate file
test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')
grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data
# Step 1: Extract unique school numbers from test_info
unique_schools = test_info[0].unique()
# Step 2: Filter the grad_rate_data using the unique school numbers
schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]
# Define a threshold for high and low graduation rates (adjust as needed)
grad_rate_threshold = 0.9
# Step 4: Divide schools into high and low graduation rate groups
high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()
low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()
# Step 5: Sample percentage of schools from each group
high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
# Step 6: Combine the sampled schools
random_schools = high_sample + low_sample
# Step 7: Get indices for the sampled schools
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
# Load the test file and select rows based on indices
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
selected_rows_df2 = test.loc[indices]
# Save the selected rows to a file
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
# For demonstration purposes, we'll just return the content with the selected model name
# print(checkpoint)
progress(0.1, desc="Files created and saved")
# if (inc_val<5):
# model_name="highGRschool10"
# elif(inc_val>=5 & inc_val<10):
# model_name="highGRschool10"
# else:
# model_name="highGRschool10"
# Function to analyze each row
def analyze_row(row):
# Split the row into fields
fields = row.split("\t")
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
optional_task_1_subtasks = ["DenominatorFactor", "NumeratorFactor", "EquationAnswer"]
optional_task_2_subtasks = [
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2",
"SecondRow", "ThirdRow"
]
final_answer_tasks = ["FinalAnswer"]
# Helper function to evaluate task attempts
def evaluate_tasks(fields, tasks):
task_status = {}
for task in tasks:
relevant_attempts = [f for f in fields if task in f]
# print(relevant_attempts)
if any("OK" in attempt for attempt in relevant_attempts):
task_status[task] = "Attempted (Successful)"
elif any("ERROR" in attempt for attempt in relevant_attempts):
task_status[task] = "Attempted (Error)"
elif any("JIT" in attempt for attempt in relevant_attempts):
task_status[task] = "Attempted (JIT)"
else:
task_status[task] = "Unattempted"
return task_status
# Evaluate tasks for each category
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)
final_answer_status = evaluate_tasks(fields, final_answer_tasks)
# Combine results
result = {
"OptionalTask_1": optional_task_1_status,
"OptionalTask_2": optional_task_2_status,
"FinalAnswer": final_answer_status,
}
return result
# Read data from test_info.txt
with open(test_info_location, "r") as file:
data = file.readlines()
results = [analyze_row(row.strip()) for row in data if row.strip()]
status_counts = {}
for result in results:
for task_category, task_statuses in result.items():
for task, status in task_statuses.items():
if task not in status_counts:
status_counts[task] = {"Attempted (Successful)": 0, "Attempted (Error)": 0,
"Attempted (JIT)": 0, "Unattempted": 0}
status_counts[task][status] += 1
# Create a string output for results
output_summary = "Task Analysis Summary:\n"
output_summary += "-----------------------\n"
for task, statuses in status_counts.items():
output_summary += f"Task: {task}\n"
for status, count in statuses.items():
output_summary += f" {status}: {count}\n"
progress(0.2, desc="analysis done!! Executing models")
subprocess.run([
"python", "new_test_saved_finetuned_model.py",
"-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
"-finetune_task", finetune_task,
"-test_dataset_path","../../../../selected_rows.txt",
# "-test_label_path","../../../../train_label.txt",
"-finetuned_bert_classifier_checkpoint",
"ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
"-e",str(1),
"-b",str(1000)
])
progress(0.6,desc="Model execution completed")
result = {}
with open("result.txt", 'r') as file:
for line in file:
key, value = line.strip().split(': ', 1)
# print(type(key))
if key=='epoch':
result[key]=value
else:
result[key]=float(value)
# Create a plot
with open("roc_data.pkl", "rb") as f:
fpr, tpr, _ = pickle.load(f)
roc_auc = auc(fpr, tpr)
fig, ax = plt.subplots()
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'(Receiver Operating Curve) ROC')
ax.legend(loc="lower right")
ax.grid()
# Save plot to a file
plot_path = "plot.png"
fig.savefig(plot_path)
plt.close(fig)
progress(1.0)
# Prepare text output
text_output = f"Model: {model_name}\nResult:\n{result}"
# Prepare text output with HTML formatting
text_output = f"""
Model: {model_name}\n
-----------------\n
Time Taken: {result['time_taken_from_start']:.2f} seconds\n
Total Schools in test: {len(unique_schools):.4f}\n
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
Total number of instances having Schools with LGR: {len(low_sample):.4f}\n
-----------------\n
"""
return text_output,plot_path
# List of models for the dropdown menu
models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"]
content = """
<h1 style="color: white;">ASTRA: An AI Model for Analyzing Math Strategies</h1>
<h3 style="color: white;">
<a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color: #1E90FF; text-decoration: none;">Link To Paper</a> |
<a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> |
<a href="#" style="color: #1E90FF; text-decoration: none;">Project Page</a>
</h3>
<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the
<a href="https://www.memphis.edu" style="color: #1E90FF; text-decoration: none;">University of Memphis</a> and
<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a>
to utilize AI to improve our understanding of math learning strategies.</p>
<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT)
that learns math strategies using data collected from hundreds of schools in the U.S. who have used
Carnegie Learning's MATHia (formerly known as Cognitive Tutor), the flagship Intelligent Tutor
that is part of a core, blended math curriculum.</p>
<p style="color: white;">For this demo, we have used data from a specific domain (teaching ratio and proportions) within
7th grade math. The fine-tuning based on the pre-trained models learns to predict which strategies
lead to correct vs. incorrect solutions.</p>
<p style="color: white;">To use the demo, please follow these steps:</p>
<ol style="color: white;">
<li style="color: white;">Select a fine-tuned model:
<ul style="color: white;">
<li style="color: white;">ASTRA-FT-HGR: Fine-tuned with a small sample of data from schools that have a high graduation rate.</li>
<li style="color: white;">ASTRA-FT-LGR: Fine-tuned with a small sample of data from schools that have a low graduation rate.</li>
<li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li>
</ul>
</li>
<li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time).</li>
<li style="color: white;">View Results:
<ul>
<li style="color: white;">The results from the fine-tuned model are displayed on the dashboard.</li>
<li style="color: white;">The results are shown separately for schools that have high and low graduation rates.</li>
</ul>
</li>
</ol>
"""
# CSS styling for white text
# Create the Gradio interface
with gr.Blocks(css="""
body {
background-color: #1e1e1e!important;
font-family: 'Arial', sans-serif;
color: #f5f5f5!important;;
}
.gradio-container {
max-width: 850px!important;
margin: 0 auto!important;;
padding: 20px!important;;
background-color: #292929!important;
border-radius: 10px;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2);
}
.gradio-container-4-44-0 .prose h1 {
font-size: var(--text-xxl);
color: #ffffff!important;
}
#title {
color: white!important;
font-size: 2.3em;
font-weight: bold;
text-align: center!important;
margin-bottom: 20px;
}
.description {
text-align: center;
font-size: 1.1em;
color: #bfbfbf;
margin-bottom: 30px;
}
.file-box {
max-width: 180px;
padding: 5px;
background-color: #444!important;
border: 1px solid #666!important;
border-radius: 6px;
height: 80px!important;;
margin: 0 auto!important;;
text-align: center;
color: transparent;
}
.file-box span {
color: #f5f5f5!important;
font-size: 1em;
line-height: 45px; /* Vertically center text */
}
.dropdown-menu {
max-width: 220px;
margin: 0 auto!important;
background-color: #444!important;
color:#444!important;
border-radius: 6px;
padding: 8px;
font-size: 1.1em;
border: 1px solid #666;
}
.button {
background-color: #4CAF50!important;
color: white!important;
font-size: 1.1em;
padding: 10px 25px;
border-radius: 6px;
cursor: pointer;
transition: background-color 0.2s ease-in-out;
}
.button:hover {
background-color: #45a049!important;
}
.output-text {
background-color: #333!important;
padding: 12px;
border-radius: 8px;
border: 1px solid #666;
font-size: 1.1em;
}
.footer {
text-align: center;
margin-top: 50px;
font-size: 0.9em;
color: #b0b0b0;
}
.svelte-12ioyct .wrap {
display: none !important;
}
.file-label-text {
display: none !important;
}
div.svelte-sfqy0y {
display: flex;
flex-direction: inherit;
flex-wrap: wrap;
gap: var(--form-gap-width);
box-shadow: var(--block-shadow);
border: var(--block-border-width) solid var(--border-color-primary);
border-radius: var(--block-radius);
background: #1f2937!important;
overflow-y: hidden;
}
.block.svelte-12cmxck {
position: relative;
margin: 0;
box-shadow: var(--block-shadow);
border-width: var(--block-border-width);
border-color: var(--block-border-color);
border-radius: var(--block-radius);
background: #1f2937!important;
width: 100%;
line-height: var(--line-sm);
}
.svelte-12ioyct .wrap {
display: none !important;
}
.file-label-text {
display: none !important;
}
input[aria-label="file upload"] {
display: none !important;
}
gradio-app .gradio-container.gradio-container-4-44-0 .contain .file-box span {
font-size: 1em;
line-height: 45px;
color: #1f2937 !important;
}
.wrap.svelte-12ioyct {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
min-height: var(--size-60);
color: #1f2937 !important;
line-height: var(--line-md);
height: 100%;
padding-top: var(--size-3);
text-align: center;
margin: auto var(--spacing-lg);
}
span.svelte-1gfkn6j:not(.has-info) {
margin-bottom: var(--spacing-lg);
color: white!important;
}
label.float.svelte-1b6s6s {
position: relative!important;
top: var(--block-label-margin);
left: var(--block-label-margin);
}
label.svelte-1b6s6s {
display: inline-flex;
align-items: center;
z-index: var(--layer-2);
box-shadow: var(--block-label-shadow);
border: var(--block-label-border-width) solid var(--border-color-primary);
border-top: none;
border-left: none;
border-radius: var(--block-label-radius);
background: rgb(120 151 180)!important;
padding: var(--block-label-padding);
pointer-events: none;
color: #1f2937!important;
font-weight: var(--block-label-text-weight);
font-size: var(--block-label-text-size);
line-height: var(--line-sm);
}
.file.svelte-18wv37q.svelte-18wv37q {
display: block!important;
width: var(--size-full);
}
tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
background: ##7897b4!important;
color: white;
background: #aca7b2;
}
.gradio-container-4-31-4 .prose h1, .gradio-container-4-31-4 .prose h2, .gradio-container-4-31-4 .prose h3, .gradio-container-4-31-4 .prose h4, .gradio-container-4-31-4 .prose h5 {
color: white;
}
""") as demo:
gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
gr.Markdown(content)
with gr.Row():
# file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
# label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")
# info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
model_dropdown = gr.Dropdown(choices=models, label="Select Fine-tuned Model", elem_classes="dropdown-menu")
increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1)
gr.Markdown("<p class='description'>Dashboard</p>")
with gr.Row():
output_text = gr.Textbox(label="")
output_image = gr.Image(label="ROC")
# output_summary = gr.Textbox(label="Summary")
btn = gr.Button("Submit")
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image])
# Launch the app
demo.launch() |