File size: 19,533 Bytes
6a34fd4
 
 
ee40bd7
6a34fd4
 
 
debb3aa
 
c343cc3
a326aed
6a34fd4
1922da0
5549b66
ee40bd7
5549b66
ee40bd7
5549b66
 
 
 
 
ee40bd7
5549b66
 
 
1282ae1
f2b12d8
 
 
1282ae1
f2b12d8
 
 
1282ae1
f2b12d8
 
 
 
 
f9c5a79
1282ae1
 
c343cc3
1282ae1
c343cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a326aed
 
c343cc3
 
1282ae1
c343cc3
 
 
 
 
a326aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
1282ae1
c343cc3
 
 
 
 
 
 
 
f2b12d8
 
a326aed
f2b12d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a326aed
 
 
 
 
 
 
 
f2b12d8
 
 
 
a326aed
 
f2b12d8
a326aed
 
 
 
 
f2b12d8
a326aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b12d8
 
 
 
 
a326aed
 
 
 
 
f2b12d8
a326aed
f2b12d8
 
f9c5a79
5c72fe4
 
 
1282ae1
c343cc3
5c72fe4
 
 
 
ee40bd7
5e7e944
ee40bd7
445302e
 
 
 
 
 
 
 
 
a326aed
 
debb3aa
 
 
a326aed
debb3aa
 
 
 
f2b12d8
debb3aa
 
 
 
 
 
 
a326aed
 
 
 
ee40bd7
debb3aa
 
c343cc3
 
 
 
f2b12d8
c343cc3
3821b59
f2b12d8
 
a326aed
 
 
c343cc3
 
a326aed
6a34fd4
 
1922da0
f9c5a79
 
810513c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
bffd338
 
 
 
 
 
810513c
bffd338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810513c
bffd338
 
 
810513c
bffd338
f2b12d8
810513c
 
6a34fd4
 
5549b66
 
1922da0
5549b66
5c72fe4
f2b12d8
1922da0
bffd338
3821b59
f2b12d8
debb3aa
f2b12d8
 
a326aed
6a34fd4
 
ee40bd7
a326aed
1922da0
6a34fd4
 
bffd338
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import gradio as gr
from huggingface_hub import hf_hub_download
import pickle
from gradio import Progress
import numpy as np
import subprocess
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import pandas as pd
from sklearn.metrics import roc_auc_score
# Define the function to process the input file and model selection

def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
    # progress = gr.Progress(track_tqdm=True)

    progress(0, desc="Starting the processing") 
    # with open(file.name, 'r') as f:
    #     content = f.read()
    # saved_test_dataset = "train.txt"
    # saved_test_label = "train_label.txt"
    # saved_train_info="train_info.txt"
    # Save the uploaded file content to a specified location
    # shutil.copyfile(file.name, saved_test_dataset)
    # shutil.copyfile(label.name, saved_test_label)
    # shutil.copyfile(info.name, saved_train_info)
    parent_location="ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/"
    test_info_location=parent_location+"fullTest/test_info.txt"
    test_location=parent_location+"fullTest/test.txt"
    if(model_name=="ASTRA-FT-HGR"):
        finetune_task="highGRschool10"
        # test_info_location=parent_location+"fullTest/test_info.txt"
        # test_location=parent_location+"fullTest/test.txt"
    elif(model_name== "ASTRA-FT-LGR" ):
        finetune_task="lowGRschoolAll"
        # test_info_location=parent_location+"lowGRschoolAll/test_info.txt"
        # test_location=parent_location+"lowGRschoolAll/test.txt"
    elif(model_name=="ASTRA-FT-FULL"):
        # test_info_location=parent_location+"fullTest/test_info.txt"
        # test_location=parent_location+"fullTest/test.txt"
        finetune_task="fullTest"
    else:
        finetune_task=None
    # Load the test_info file and the graduation rate file
    test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')
    grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate'])  # Load the grad_rate data

    # Step 1: Extract unique school numbers from test_info
    unique_schools = test_info[0].unique()

    # Step 2: Filter the grad_rate_data using the unique school numbers
    schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]

    # Define a threshold for high and low graduation rates (adjust as needed)
    grad_rate_threshold = 0.9  

    # Step 4: Divide schools into high and low graduation rate groups
    high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()
    low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()

    # Step 5: Sample percentage of schools from each group
    high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
    low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()

    # Step 6: Combine the sampled schools
    random_schools = high_sample + low_sample

    # Step 7: Get indices for the sampled schools
    indices = test_info[test_info[0].isin(random_schools)].index.tolist()
    high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
    low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()

    # Load the test file and select rows based on indices
    test = pd.read_csv(test_location, sep=',', header=None, engine='python')
    selected_rows_df2 = test.loc[indices]

    # Save the selected rows to a file
    selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')

    graduation_groups = [
    'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
    ]

    
    with open("roc_data2.pkl", 'rb') as file:
        data = pickle.load(file)
    t_label=data[0]
    p_label=data[1]
    # Step 1: Align graduation_group, t_label, and p_label
    aligned_labels = list(zip(graduation_groups, t_label, p_label))

    # Step 2: Separate the labels for high and low groups
    high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
    low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']

    high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
    low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']

    high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
    low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
    # For demonstration purposes, we'll just return the content with the selected model name

    # print(checkpoint)
    progress(0.1, desc="Files created and saved")
    # if (inc_val<5):
    #     model_name="highGRschool10"
    # elif(inc_val>=5 & inc_val<10):
    #     model_name="highGRschool10"
    # else:
    #     model_name="highGRschool10"
    # Function to analyze each row
    def analyze_row(row):
    # Split the row into fields
        fields = row.split("\t")

        # Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
        optional_task_1_subtasks = ["DenominatorFactor", "NumeratorFactor", "EquationAnswer"]
        optional_task_2_subtasks = [
            "FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2", 
            "SecondRow", "ThirdRow"
        ]

        # Helper function to evaluate task attempts
        def evaluate_tasks(fields, tasks):
            task_status = {}
            for task in tasks:
                relevant_attempts = [f for f in fields if task in f]
                if any("OK" in attempt for attempt in relevant_attempts):
                    task_status[task] = "Attempted (Successful)"
                elif any("ERROR" in attempt for attempt in relevant_attempts):
                    task_status[task] = "Attempted (Error)"
                elif any("JIT" in attempt for attempt in relevant_attempts):
                    task_status[task] = "Attempted (JIT)"
                else:
                    task_status[task] = "Unattempted"
            return task_status

        # Evaluate tasks for each category
        optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
        optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)

        # Check if tasks have any successful attempt
        opt1_done = any(status == "Attempted (Successful)" for status in optional_task_1_status.values())
        opt2_done = any(status == "Attempted (Successful)" for status in optional_task_2_status.values())

        return opt1_done, opt2_done

    # Read data from test_info.txt
    # Read data from test_info.txt
    with open(test_info_location, "r") as file:
        data = file.readlines()

    # Assuming test_info[7] is a list with ideal tasks for each instance
    ideal_tasks = test_info[6]  # A list where each element is either 1 or 2

    # Initialize counters
    task_counts = {
        1: {"only_opt1": 0, "only_opt2": 0, "both": 0},
        2: {"only_opt1": 0, "only_opt2": 0, "both": 0}
    }

    # Analyze rows
    for i, row in enumerate(data):
        row = row.strip()
        if not row:
            continue

        ideal_task = ideal_tasks[i]  # Get the ideal task for the current row
        opt1_done, opt2_done = analyze_row(row)

        if ideal_task == 0:
            if opt1_done and not opt2_done:
                task_counts[1]["only_opt1"] += 1
            elif not opt1_done and opt2_done:
                task_counts[1]["only_opt2"] += 1
            elif opt1_done and opt2_done:
                task_counts[1]["both"] += 1
        elif ideal_task == 1:
            if opt1_done and not opt2_done:
                task_counts[2]["only_opt1"] += 1
            elif not opt1_done and opt2_done:
                task_counts[2]["only_opt2"] += 1
            elif opt1_done and opt2_done:
                task_counts[2]["both"] += 1

    # Create a string output for results
    output_summary = "Task Analysis Summary:\n"
    output_summary += "-----------------------\n"

    for ideal_task, counts in task_counts.items():
        output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
        output_summary += f"  Only OptionalTask_1 done: {counts['only_opt1']}\n"
        output_summary += f"  Only OptionalTask_2 done: {counts['only_opt2']}\n"
        output_summary += f"  Both done: {counts['both']}\n"

    # print(output_summary)

    progress(0.2, desc="analysis done!! Executing models")
    print("finetuned task: ",finetune_task)
    subprocess.run([
        "python", "new_test_saved_finetuned_model.py",
        "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
        "-finetune_task", finetune_task,
        "-test_dataset_path","../../../../selected_rows.txt",
        # "-test_label_path","../../../../train_label.txt",
        "-finetuned_bert_classifier_checkpoint", 
        "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
        "-e",str(1),
        "-b",str(1000)
    ])
    progress(0.6,desc="Model execution completed")
    result = {}
    with open("result.txt", 'r') as file:
        for line in file:
            key, value = line.strip().split(': ', 1)
            # print(type(key))
            if key=='epoch':
                result[key]=value
            else:
                 result[key]=float(value)
    result["ROC score of HGR"]=high_roc_auc
    result["ROC score of LGR"]=low_roc_auc
# Create a plot
    with open("roc_data.pkl", "rb") as f:
        fpr, tpr, _ = pickle.load(f)
    # print(fpr,tpr)
    roc_auc = auc(fpr, tpr)
    fig, ax = plt.subplots()
    ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
    ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
    ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'(Receiver Operating Curve) ROC')
    ax.legend(loc="lower right")
    ax.grid()

    # Save plot to a file
    plot_path = "plot.png"
    fig.savefig(plot_path)
    plt.close(fig)


    

    progress(1.0)
    # Prepare text output
    text_output = f"Model: {model_name}\nResult:\n{result}"
    # Prepare text output with HTML formatting
    text_output = f"""
    Model: {model_name}\n
    -----------------\n

    Time Taken: {result['time_taken_from_start']:.2f} seconds\n
    Total Schools in test: {len(unique_schools):.4f}\n
    Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
    Total number of instances having Schools with LGR: {len(low_sample):.4f}\n

    ROC score of HGR: {high_roc_auc}\n
    ROC score of LGR: {low_roc_auc}\n
    -----------------\n
    """
    return text_output,plot_path,output_summary

# List of models for the dropdown menu

# models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"]
models = ["ASTRA-FT-HGR", "ASTRA-FT-FULL"]
content = """
<h1 style="color: white;">ASTRA: An AI Model for Analyzing Math Strategies</h1>

<h3 style="color: white;">
    <a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color: #1E90FF; text-decoration: none;">Link To Paper</a> | 
    <a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> | 
    <a href="#" style="color: #1E90FF; text-decoration: none;">Project Page</a>
</h3>

<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the 
<a href="https://www.memphis.edu" style="color: #1E90FF; text-decoration: none;">University of Memphis</a> and 
<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a> 
to utilize AI to improve our understanding of math learning strategies.</p>

<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT) 
that learns math strategies using data collected from hundreds of schools in the U.S. who have used 
Carnegie Learning's MATHia (formerly known as Cognitive Tutor), the flagship Intelligent Tutor 
that is part of a core, blended math curriculum.</p>

<p style="color: white;">For this demo, we have used data from a specific domain (teaching ratio and proportions) within 
7th grade math. The fine-tuning based on the pre-trained models learns to predict which strategies 
lead to correct vs. incorrect solutions.</p>

<p style="color: white;">To use the demo, please follow these steps:</p>

<ol style="color: white;">
    <li style="color: white;">Select a fine-tuned model:
        <ul style="color: white;">
            <li style="color: white;">ASTRA-FT-HGR: Fine-tuned with a small sample of data from schools that have a high graduation rate.</li>
            <li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li>
        </ul>
    </li>
    <li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time).</li>
    <li style="color: white;">View Results:
        <ul>
            <li style="color: white;">The results from the fine-tuned model are displayed on the dashboard.</li>
            <li style="color: white;">The results are shown separately for schools that have high and low graduation rates.</li>
        </ul>
    </li>
</ol>
"""
# CSS styling for white text
# Create the Gradio interface
with gr.Blocks(css="""
    body {
        background-color: #1e1e1e!important;
        font-family: 'Arial', sans-serif;
        color: #f5f5f5!important;;
    }

    .gradio-container {
        max-width: 850px!important;
        margin: 0 auto!important;;
        padding: 20px!important;;
        background-color: #292929!important;
        border-radius: 10px;
        box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2);
    }
    .gradio-container-4-44-0 .prose h1 {
    font-size: var(--text-xxl);
    color: #ffffff!important;
}
    #title {
        color: white!important;
        font-size: 2.3em;
        font-weight: bold;
        text-align: center!important;
        margin-bottom: 20px;
    }
    .description {
        text-align: center;
        font-size: 1.1em;
        color: #bfbfbf;
        margin-bottom: 30px;
    }
    .file-box {
        max-width: 180px;
        padding: 5px;
        background-color: #444!important;
        border: 1px solid #666!important;
        border-radius: 6px;
        height: 80px!important;;  
        margin: 0 auto!important;; 
        text-align: center; 
        color: transparent;
    }
    .file-box span {
        color: #f5f5f5!important;
        font-size: 1em;
        line-height: 45px; /* Vertically center text */
    }
    .dropdown-menu {
        max-width: 220px;
        margin: 0 auto!important;
        background-color: #444!important;
        color:#444!important;
        border-radius: 6px;
        padding: 8px;
        font-size: 1.1em;
        border: 1px solid #666;
    }
    .button {
        background-color: #4CAF50!important;
        color: white!important;
        font-size: 1.1em;
        padding: 10px 25px;
        border-radius: 6px;
        cursor: pointer;
        transition: background-color 0.2s ease-in-out;
    }
    .button:hover {
        background-color: #45a049!important;
    }
    .output-text {
        background-color: #333!important;
        padding: 12px;
        border-radius: 8px;
        border: 1px solid #666;
        font-size: 1.1em;
    }
    .footer {
        text-align: center;
        margin-top: 50px;
        font-size: 0.9em;
        color: #b0b0b0;
    }
    .svelte-12ioyct .wrap {
    display: none !important;
}
.file-label-text {
    display: none !important;
}

div.svelte-sfqy0y {
    display: flex;
    flex-direction: inherit;
    flex-wrap: wrap;
    gap: var(--form-gap-width);
    box-shadow: var(--block-shadow);
    border: var(--block-border-width) solid var(--border-color-primary);
    border-radius: var(--block-radius);
    background: #1f2937!important;
    overflow-y: hidden;
}

.block.svelte-12cmxck {
    position: relative;
    margin: 0;
    box-shadow: var(--block-shadow);
    border-width: var(--block-border-width);
    border-color: var(--block-border-color);
    border-radius: var(--block-radius);
    background: #1f2937!important;
    width: 100%;
    line-height: var(--line-sm);
}

    .svelte-12ioyct .wrap {
    display: none !important;
}
.file-label-text {
    display: none !important;
}
input[aria-label="file upload"] {
    display: none !important;
}

gradio-app .gradio-container.gradio-container-4-44-0 .contain .file-box span {
    font-size: 1em;
    line-height: 45px;
    color: #1f2937 !important;
}
.wrap.svelte-12ioyct {
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
    min-height: var(--size-60);
    color: #1f2937 !important;
    line-height: var(--line-md);
    height: 100%;
    padding-top: var(--size-3);
    text-align: center;
    margin: auto var(--spacing-lg);
}
span.svelte-1gfkn6j:not(.has-info) {
    margin-bottom: var(--spacing-lg);
    color: white!important;
}
label.float.svelte-1b6s6s {
    position: relative!important;
    top: var(--block-label-margin);
    left: var(--block-label-margin);
}
label.svelte-1b6s6s {
    display: inline-flex;
    align-items: center;
    z-index: var(--layer-2);
    box-shadow: var(--block-label-shadow);
    border: var(--block-label-border-width) solid var(--border-color-primary);
    border-top: none;
    border-left: none;
    border-radius: var(--block-label-radius);
    background: rgb(120 151 180)!important;
    padding: var(--block-label-padding);
    pointer-events: none;
    color: #1f2937!important;
    font-weight: var(--block-label-text-weight);
    font-size: var(--block-label-text-size);
    line-height: var(--line-sm);
}
.file.svelte-18wv37q.svelte-18wv37q {
    display: block!important;
    width: var(--size-full);
}

tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
    background: ##7897b4!important;
    color: white;
    background: #aca7b2;
}

.gradio-container-4-31-4 .prose h1, .gradio-container-4-31-4 .prose h2, .gradio-container-4-31-4 .prose h3, .gradio-container-4-31-4 .prose h4, .gradio-container-4-31-4 .prose h5 {

    color: white;
}
""") as demo:
    
    gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
    gr.Markdown(content)
    
    with gr.Row():
        # file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
        # label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")

        # info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
    
        model_dropdown = gr.Dropdown(choices=models, label="Select Fine-tuned Model", elem_classes="dropdown-menu")

    
    increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1)
    gr.Markdown("<p class='description'>Dashboard</p>")
    with gr.Row():
        output_text = gr.Textbox(label="")
        output_image = gr.Image(label="ROC")
        output_summary = gr.Textbox(label="Summary")

    btn = gr.Button("Submit")
 
    btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image,output_summary])


# Launch the app
demo.launch()