File size: 22,350 Bytes
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.optim import Adam, SGD
from torch.utils.data import DataLoader
import pickle

from bert import BERT
from seq_model import BERTSM
from classifier_model import BERTForClassification
from optim_schedule import ScheduledOptim

import tqdm
import sys

import numpy as np
import visualization

from sklearn.metrics import precision_score, recall_score, f1_score

class ECE(nn.Module):

    def __init__(self, n_bins=15):
        """
        n_bins (int): number of confidence interval bins
        """
        super(ECE, self).__init__()
        bin_boundaries = torch.linspace(0, 1, n_bins + 1)
        self.bin_lowers = bin_boundaries[:-1]
        self.bin_uppers = bin_boundaries[1:]

    def forward(self, logits, labels):
        softmaxes = F.softmax(logits, dim=1)
        confidences, predictions = torch.max(softmaxes, 1)
        labels = torch.argmax(labels,1)
        accuracies = predictions.eq(labels)

        ece = torch.zeros(1, device=logits.device)
        for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
            # Calculated |confidence - accuracy| in each bin
            in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
            prop_in_bin = in_bin.float().mean()
            if prop_in_bin.item() > 0:
                accuracy_in_bin = accuracies[in_bin].float().mean()
                avg_confidence_in_bin = confidences[in_bin].mean()
                ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin

        return ece
    
def accurate_nb(preds, labels):
    pred_flat = np.argmax(preds, axis=1).flatten()
    labels_flat = np.argmax(labels, axis=1).flatten()
    labels_flat = labels.flatten()
    return np.sum(pred_flat == labels_flat)

class BERTTrainer:
    """
    # Sequence..
    
    BERTTrainer make the pretrained BERT model with two LM training method.

        1. Masked Language Model : 3.3.1 Task #1: Masked LM
    """

    def __init__(self, bert: BERT, vocab_size: int,
                 train_dataloader: DataLoader, test_dataloader: DataLoader = None,
                 lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
                 with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, same_student_prediction = False,
                workspace_name=None):
        """
        :param bert: BERT model which you want to train
        :param vocab_size: total word vocab size
        :param train_dataloader: train dataset data loader
        :param test_dataloader: test dataset data loader [can be None]
        :param lr: learning rate of optimizer
        :param betas: Adam optimizer betas
        :param weight_decay: Adam optimizer weight decay param
        :param with_cuda: traning with cuda
        :param log_freq: logging frequency of the batch iteration
        """

        # Setup cuda device for BERT training, argument -c, --cuda should be true
        cuda_condition = torch.cuda.is_available() and with_cuda
        self.device = torch.device("cuda:0" if cuda_condition else "cpu")
        print("Device used = ", self.device)

        # This BERT model will be saved every epoch
        self.bert = bert
        # Initialize the BERT Language Model, with BERT model
        self.model = BERTSM(bert, vocab_size).to(self.device)

        # Distributed GPU training if CUDA can detect more than 1 GPU
        if with_cuda and torch.cuda.device_count() > 1:
            print("Using %d GPUS for BERT" % torch.cuda.device_count())
            self.model = nn.DataParallel(self.model, device_ids=cuda_devices)

        # Setting the train and test data loader
        self.train_data = train_dataloader
        self.test_data = test_dataloader

        # Setting the Adam optimizer with hyper-param
        self.optim = Adam(self.model.parameters(), lr=lr, betas=betas, weight_decay=weight_decay)
        self.optim_schedule = ScheduledOptim(self.optim, self.bert.hidden, n_warmup_steps=warmup_steps)

        # Using Negative Log Likelihood Loss function for predicting the masked_token
        self.criterion = nn.NLLLoss(ignore_index=0)
    
        self.log_freq = log_freq
        self.same_student_prediction = same_student_prediction
        self.workspace_name = workspace_name
        self.save_model = False
        self.avg_loss = 10000
        print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))

    def train(self, epoch):
        self.iteration(epoch, self.train_data)

    def test(self, epoch):
        self.iteration(epoch, self.test_data, train=False)

    def iteration(self, epoch, data_loader, train=True):
        """
        loop over the data_loader for training or testing
        if on train status, backward operation is activated
        and also auto save the model every peoch

        :param epoch: current epoch index
        :param data_loader: torch.utils.data.DataLoader for iteration
        :param train: boolean value of is train or test
        :return: None
        """
        str_code = "train" if train else "test"
        code = "masked_prediction" if self.same_student_prediction else "masked"
       
        self.log_file = f"{self.workspace_name}/logs/{code}/log_{str_code}_pretrained.txt"
        bert_hidden_representations = []
        if epoch == 0:
            f = open(self.log_file, 'w')
            f.close()
            if not train:
                self.avg_loss = 10000
        # Setting the tqdm progress bar
        data_iter = tqdm.tqdm(enumerate(data_loader),
                              desc="EP_%s:%d" % (str_code, epoch),
                              total=len(data_loader),
                              bar_format="{l_bar}{r_bar}")

        avg_loss_mask = 0.0
        total_correct_mask = 0
        total_element_mask = 0
        
        avg_loss_pred = 0.0
        total_correct_pred = 0
        total_element_pred = 0
        
        avg_loss = 0.0
        with open(self.log_file, 'a') as f:
            sys.stdout = f
            for i, data in data_iter:
                # 0. batch_data will be sent into the device(GPU or cpu)
                data = {key: value.to(self.device) for key, value in data.items()}

                # 1. forward the next_sentence_prediction and masked_lm model
                # next_sent_output, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"])
                if self.same_student_prediction:
                    bert_hidden_rep, mask_lm_output, same_student_output = self.model.forward(data["bert_input"], data["segment_label"], self.same_student_prediction)
                else:
                    bert_hidden_rep, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"], self.same_student_prediction)

                embeddings = [h for h in bert_hidden_rep.cpu().detach().numpy()]
                bert_hidden_representations.extend(embeddings)


                # 2-2. NLLLoss of predicting masked token word
                mask_loss = self.criterion(mask_lm_output.transpose(1, 2), data["bert_label"])

                # 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure
                if self.same_student_prediction:
                    # 2-1. NLL(negative log likelihood) loss of is_next classification result
                    same_student_loss = self.criterion(same_student_output, data["is_same_student"])
                    loss = same_student_loss + mask_loss
                else:
                    loss = mask_loss

                # 3. backward and optimization only in train
                if train:
                    self.optim_schedule.zero_grad()
                    loss.backward()
                    self.optim_schedule.step_and_update_lr()


                non_zero_mask = (data["bert_label"] != 0).float()
                predictions = torch.argmax(mask_lm_output, dim=-1)
                predicted_masked = predictions*non_zero_mask
                mask_correct = ((data["bert_label"] == predicted_masked)*non_zero_mask).sum().item()

                avg_loss_mask += loss.item()
                total_correct_mask += mask_correct
                total_element_mask += non_zero_mask.sum().item()

                post_fix = {
                    "epoch": epoch,
                    "iter": i,
                    "avg_loss": avg_loss_mask / (i + 1),
                    "avg_acc_mask": total_correct_mask / total_element_mask * 100,
                    "loss": loss.item()
                }

                # next sentence prediction accuracy
                if self.same_student_prediction:
                    correct = same_student_output.argmax(dim=-1).eq(data["is_same_student"]).sum().item()
                    avg_loss_pred += loss.item()
                    total_correct_pred += correct
                    total_element_pred += data["is_same_student"].nelement()
                # correct = next_sent_output.argmax(dim=-1).eq(data["is_next"]).sum().item()
                    post_fix["avg_loss"] = avg_loss_pred / (i + 1)
                    post_fix["avg_acc_pred"] = total_correct_pred / total_element_pred * 100
                    post_fix["loss"] = loss.item()

                avg_loss +=loss.item()

                if i % self.log_freq == 0:
                    data_iter.write(str(post_fix))
                # if not train and epoch > 20 :
                #     pickle.dump(mask_lm_output.cpu().detach().numpy(), open(f"logs/mask/mask_out_e{epoch}_{i}.pkl","wb"))
                #     pickle.dump(data["bert_label"].cpu().detach().numpy(), open(f"logs/mask/label_e{epoch}_{i}.pkl","wb"))
            
            final_msg = {
                "epoch": f"EP{epoch}_{str_code}",
                "avg_loss": avg_loss / len(data_iter),
                "total_masked_acc": total_correct_mask * 100.0 / total_element_mask
            }
            if self.same_student_prediction:
                final_msg["total_prediction_acc"] = total_correct_pred * 100.0 / total_element_pred

            print(final_msg)
            # print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_masked_acc=", total_correct_mask * 100.0 / total_element_mask, "total_prediction_acc=", total_correct_pred * 100.0 / total_element_pred)
        # else:
        #     print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_masked_acc=", total_correct_mask * 100.0 / total_element_mask)
        # print("EP%d_%s, " % (epoch, str_code))
        
            f.close()
        sys.stdout = sys.__stdout__
        self.save_model = False
        if self.avg_loss > (avg_loss / len(data_iter)):
            self.save_model = True
            self.avg_loss = (avg_loss / len(data_iter))

        # pickle.dump(bert_hidden_representations, open(f"embeddings/{code}/{str_code}_embeddings_{epoch}.pkl","wb"))

        

    def save(self, epoch, file_path="output/bert_trained.model"):
        """
        Saving the current BERT model on file_path

        :param epoch: current epoch number
        :param file_path: model output path which gonna be file_path+"ep%d" % epoch
        :return: final_output_path
        """
        output_path = file_path + ".ep%d" % epoch
        torch.save(self.bert.cpu(), output_path)
        self.bert.to(self.device)
        print("EP:%d Model Saved on:" % epoch, output_path)
        return output_path


class BERTFineTuneTrainer:
    
    def __init__(self, bert: BERT, vocab_size: int,
                 train_dataloader: DataLoader, test_dataloader: DataLoader = None,
                 lr: float = 1e-4, betas=(0.9, 0.999), weight_decay: float = 0.01, warmup_steps=10000,
                 with_cuda: bool = True, cuda_devices=None, log_freq: int = 10, workspace_name=None, num_labels=2):
        """
        :param bert: BERT model which you want to train
        :param vocab_size: total word vocab size
        :param train_dataloader: train dataset data loader
        :param test_dataloader: test dataset data loader [can be None]
        :param lr: learning rate of optimizer
        :param betas: Adam optimizer betas
        :param weight_decay: Adam optimizer weight decay param
        :param with_cuda: traning with cuda
        :param log_freq: logging frequency of the batch iteration
        """

        # Setup cuda device for BERT training, argument -c, --cuda should be true
        cuda_condition = torch.cuda.is_available() and with_cuda
        self.device = torch.device("cuda:0" if cuda_condition else "cpu")
        print("Device used = ", self.device)

        # This BERT model will be saved every epoch
        self.bert = bert
        # for param in self.bert.parameters():
        #     param.requires_grad = False
        # Initialize the BERT Language Model, with BERT model
        self.model = BERTForClassification(self.bert, vocab_size, num_labels).to(self.device)

        # Distributed GPU training if CUDA can detect more than 1 GPU
        if with_cuda and torch.cuda.device_count() > 1:
            print("Using %d GPUS for BERT" % torch.cuda.device_count())
            self.model = nn.DataParallel(self.model, device_ids=cuda_devices)

        # Setting the train and test data loader
        self.train_data = train_dataloader
        self.test_data = test_dataloader
    
        self.optim = Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay, eps=1e-9)
        # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1)
        
        if num_labels == 1:
            self.criterion = nn.MSELoss()
        elif num_labels == 2:
            self.criterion = nn.CrossEntropyLoss()
        elif num_labels > 2:
            self.criterion = nn.BCEWithLogitsLoss()
        
        self.ece_criterion = ECE().to(self.device)
        
        self.log_freq = log_freq
        self.workspace_name = workspace_name
        self.save_model = False
        self.avg_loss = 10000
        print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))

    def train(self, epoch):
        self.iteration(epoch, self.train_data)

    def test(self, epoch):
        self.iteration(epoch, self.test_data, train=False)

    def iteration(self, epoch, data_loader, train=True):
        """
        loop over the data_loader for training or testing
        if on train status, backward operation is activated
        and also auto save the model every peoch

        :param epoch: current epoch index
        :param data_loader: torch.utils.data.DataLoader for iteration
        :param train: boolean value of is train or test
        :return: None
        """
        str_code = "train" if train else "test"
        
        self.log_file = f"{self.workspace_name}/logs/masked/log_{str_code}_FS_finetuned.txt"

        if epoch == 0:
            f = open(self.log_file, 'w')
            f.close()
            if not train:
                self.avg_loss = 10000
            
        # Setting the tqdm progress bar
        data_iter = tqdm.tqdm(enumerate(data_loader),
                              desc="EP_%s:%d" % (str_code, epoch),
                              total=len(data_loader),
                              bar_format="{l_bar}{r_bar}")

        avg_loss = 0.0
        total_correct = 0
        total_element = 0
        plabels = []
        tlabels = []
        eval_accurate_nb = 0
        nb_eval_examples = 0
        logits_list = []
        labels_list = []
        
        if train:
            self.model.train()
        else:
            self.model.eval()
            
        with open(self.log_file, 'a') as f:
            sys.stdout = f
            
            for i, data in data_iter:
                # 0. batch_data will be sent into the device(GPU or cpu)
                data = {key: value.to(self.device) for key, value in data.items()}
                if train:
                    h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"])
                else:
                    with torch.no_grad():
                        h_rep, logits = self.model.forward(data["bert_input"], data["segment_label"])
                    # print(logits, logits.shape)
                    logits_list.append(logits.cpu())
                    labels_list.append(data["progress_status"].cpu())
                # print(">>>>>>>>>>>>", progress_output)
                # print(f"{epoch}---nelement--- {data['progress_status'].nelement()}")
                # print(data["progress_status"].shape, logits.shape)
                progress_loss = self.criterion(logits, data["progress_status"])
                loss = progress_loss
                
                if torch.cuda.device_count() > 1:
                    loss = loss.mean()

                # 3. backward and optimization only in train
                if train:
                    self.optim.zero_grad()
                    loss.backward()
                    torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
                    self.optim.step()

                # progress prediction accuracy
                # correct = progress_output.argmax(dim=-1).eq(data["progress_status"]).sum().item()
                probs = nn.LogSoftmax(dim=-1)(logits)
                predicted_labels = torch.argmax(probs, dim=-1)
                true_labels = torch.argmax(data["progress_status"], dim=-1)
                plabels.extend(predicted_labels.cpu().numpy())
                tlabels.extend(true_labels.cpu().numpy())

                # print(">>>>>>>>>>>>>>", predicted_labels, true_labels)
                # Compare predicted labels to true labels and calculate accuracy
                correct = (predicted_labels == true_labels).sum().item()
                avg_loss += loss.item()
                total_correct += correct
                total_element += true_labels.nelement()

                if train:
                    post_fix = {
                        "epoch": epoch,
                        "iter": i,
                        "avg_loss": avg_loss / (i + 1),
                        "avg_acc": total_correct / total_element * 100,
                        "loss": loss.item()
                    }
                else:
                    logits = logits.detach().cpu().numpy()
                    label_ids = data["progress_status"].to('cpu').numpy()
                    tmp_eval_nb = accurate_nb(logits, label_ids)

                    eval_accurate_nb += tmp_eval_nb
                    nb_eval_examples += label_ids.shape[0]
                    
                    total_element += data["progress_status"].nelement()
                    # avg_loss += loss.item()
                    
                    post_fix = {
                        "epoch": epoch,
                        "iter": i,
                        "avg_loss": avg_loss / (i + 1),
                        "avg_acc": tmp_eval_nb / total_element * 100,
                        "loss": loss.item()
                    }

                
                if i % self.log_freq == 0:
                    data_iter.write(str(post_fix))
            
            # precisions = precision_score(plabels, tlabels, average="weighted")
            # recalls = recall_score(plabels, tlabels, average="weighted")
            f1_scores = f1_score(plabels, tlabels, average="weighted")
            if train:
                final_msg = {
                "epoch": f"EP{epoch}_{str_code}",
                "avg_loss": avg_loss / len(data_iter),
                "total_acc": total_correct * 100.0 / total_element,
                # "precisions": precisions,
                # "recalls": recalls,
                "f1_scores": f1_scores
                }
            else:
                eval_accuracy = eval_accurate_nb/nb_eval_examples
                
                logits_ece = torch.cat(logits_list)
                labels_ece = torch.cat(labels_list)
                ece = self.ece_criterion(logits_ece, labels_ece).item()
                final_msg = {
                    "epoch": f"EP{epoch}_{str_code}",
                    "eval_accuracy": eval_accuracy,
                    "ece": ece,
                    "avg_loss": avg_loss / len(data_iter),
                    # "precisions": precisions,
                    # "recalls": recalls,
                    "f1_scores": f1_scores
                }
                if self.save_model:
                    conf_hist = visualization.ConfidenceHistogram()
                    plt_test = conf_hist.plot(np.array(logits_ece), np.array(labels_ece), title= f"Confidence Histogram {epoch}")
                    plt_test.savefig(f"{self.workspace_name}/plots/confidence_histogram/FS/conf_histogram_test_{epoch}.png",bbox_inches='tight')
                    plt_test.close()

                    rel_diagram = visualization.ReliabilityDiagram()
                    plt_test_2 = rel_diagram.plot(np.array(logits_ece), np.array(labels_ece),title=f"Reliability Diagram {epoch}")
                    plt_test_2.savefig(f"{self.workspace_name}/plots/confidence_histogram/FS/rel_diagram_test_{epoch}.png",bbox_inches='tight')
                    plt_test_2.close()
            print(final_msg)

            # print("EP%d_%s, avg_loss=" % (epoch, str_code), avg_loss / len(data_iter), "total_acc=", total_correct * 100.0 / total_element)
            f.close()
        sys.stdout = sys.__stdout__
        if train:
            self.save_model = False
            if self.avg_loss > (avg_loss / len(data_iter)):
                self.save_model = True
                self.avg_loss = (avg_loss / len(data_iter))
        
                # plt_test.show()
        # print("EP%d_%s, " % (epoch, str_code))

    def save(self, epoch, file_path="output/bert_fine_tuned_trained.model"):
        """
        Saving the current BERT model on file_path

        :param epoch: current epoch number
        :param file_path: model output path which gonna be file_path+"ep%d" % epoch
        :return: final_output_path
        """
        output_path = file_path + ".ep%d" % epoch
        torch.save(self.model.cpu(), output_path)
        self.model.to(self.device)
        print("EP:%d Model Saved on:" % epoch, output_path)
        return output_path