Spaces:
Running
Running
File size: 29,370 Bytes
fab9c3f bffd338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
import gradio as gr
from huggingface_hub import hf_hub_download
import pickle
from gradio import Progress
import numpy as np
import subprocess
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import pandas as pd
import plotly.graph_objects as go
from sklearn.metrics import roc_auc_score
from matplotlib.figure import Figure
# Define the function to process the input file and model selection
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
# progress = gr.Progress(track_tqdm=True)
progress(0, desc="Starting the processing")
# with open(file.name, 'r') as f:
# content = f.read()
# saved_test_dataset = "train.txt"
# saved_test_label = "train_label.txt"
# saved_train_info="train_info.txt"
# Save the uploaded file content to a specified location
# shutil.copyfile(file.name, saved_test_dataset)
# shutil.copyfile(label.name, saved_test_label)
# shutil.copyfile(info.name, saved_train_info)
parent_location="ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/"
test_info_location=parent_location+"fullTest/test_info.txt"
test_location=parent_location+"fullTest/test.txt"
if(model_name=="ASTRA-FT-HGR"):
finetune_task="highGRschool10"
# test_info_location=parent_location+"fullTest/test_info.txt"
# test_location=parent_location+"fullTest/test.txt"
elif(model_name== "ASTRA-FT-LGR" ):
finetune_task="lowGRschoolAll"
# test_info_location=parent_location+"lowGRschoolAll/test_info.txt"
# test_location=parent_location+"lowGRschoolAll/test.txt"
elif(model_name=="ASTRA-FT-FULL"):
# test_info_location=parent_location+"fullTest/test_info.txt"
# test_location=parent_location+"fullTest/test.txt"
finetune_task="fullTest"
else:
finetune_task=None
# Load the test_info file and the graduation rate file
test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')
grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data
# Step 1: Extract unique school numbers from test_info
unique_schools = test_info[0].unique()
# Step 2: Filter the grad_rate_data using the unique school numbers
schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]
# Define a threshold for high and low graduation rates (adjust as needed)
grad_rate_threshold = 0.9
# Step 4: Divide schools into high and low graduation rate groups
high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()
low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()
# Step 5: Sample percentage of schools from each group
high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
# Step 6: Combine the sampled schools
random_schools = high_sample + low_sample
# Step 7: Get indices for the sampled schools
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
# Load the test file and select rows based on indices
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
selected_rows_df2 = test.loc[indices]
# Save the selected rows to a file
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
graduation_groups = [
'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
]
# Group data by opt_task1 and opt_task2 based on test_info[6]
opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index]
with open("roc_data2.pkl", 'rb') as file:
data = pickle.load(file)
t_label=data[0]
p_label=data[1]
# Step 1: Align graduation_group, t_label, and p_label
aligned_labels = list(zip(graduation_groups, t_label, p_label))
opt_task_aligned = list(zip(opt_task_groups, t_label, p_label))
# Step 2: Separate the labels for high and low groups
high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1']
opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1']
opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2']
opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2']
high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None
opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None
# For demonstration purposes, we'll just return the content with the selected model name
# print(checkpoint)
progress(0.1, desc="Files created and saved")
# if (inc_val<5):
# model_name="highGRschool10"
# elif(inc_val>=5 & inc_val<10):
# model_name="highGRschool10"
# else:
# model_name="highGRschool10"
# Function to analyze each row
def analyze_row(row):
# Split the row into fields
fields = row.split("\t")
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
optional_task_1_subtasks = ["DenominatorFactor", "NumeratorFactor", "EquationAnswer"]
optional_task_2_subtasks = [
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2",
"SecondRow", "ThirdRow"
]
# Helper function to evaluate task attempts
def evaluate_tasks(fields, tasks):
task_status = {}
for task in tasks:
relevant_attempts = [f for f in fields if task in f]
if any("OK" in attempt for attempt in relevant_attempts):
task_status[task] = "Attempted (Successful)"
elif any("ERROR" in attempt for attempt in relevant_attempts):
task_status[task] = "Attempted (Error)"
elif any("JIT" in attempt for attempt in relevant_attempts):
task_status[task] = "Attempted (JIT)"
else:
task_status[task] = "Unattempted"
return task_status
# Evaluate tasks for each category
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)
# Check if tasks have any successful attempt
opt1_done = any(status == "Attempted (Successful)" for status in optional_task_1_status.values())
opt2_done = any(status == "Attempted (Successful)" for status in optional_task_2_status.values())
return opt1_done, opt2_done
# Read data from test_info.txt
with open(test_info_location, "r") as file:
data = file.readlines()
# Assuming test_info[7] is a list with ideal tasks for each instance
ideal_tasks = test_info[6] # A list where each element is either 1 or 2
# Initialize counters
task_counts = {
1: {"ER": 0, "ME": 0, "both": 0,"none":0},
2: {"ER": 0, "ME": 0, "both": 0,"none":0}
}
# Analyze rows
for i, row in enumerate(data):
row = row.strip()
if not row:
continue
ideal_task = ideal_tasks[i] # Get the ideal task for the current row
opt1_done, opt2_done = analyze_row(row)
if ideal_task == 0:
if opt1_done and not opt2_done:
task_counts[1]["ER"] += 1
elif not opt1_done and opt2_done:
task_counts[1]["ME"] += 1
elif opt1_done and opt2_done:
task_counts[1]["both"] += 1
else:
task_counts[1]["none"] +=1
elif ideal_task == 1:
if opt1_done and not opt2_done:
task_counts[2]["ER"] += 1
elif not opt1_done and opt2_done:
task_counts[2]["ME"] += 1
elif opt1_done and opt2_done:
task_counts[2]["both"] += 1
else:
task_counts[2]["none"] +=1
# Create a string output for results
# output_summary = "Task Analysis Summary:\n"
# output_summary += "-----------------------\n"
# for ideal_task, counts in task_counts.items():
# output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
# output_summary += f" Only OptionalTask_1 done: {counts['ER']}\n"
# output_summary += f" Only OptionalTask_2 done: {counts['ME']}\n"
# output_summary += f" Both done: {counts['both']}\n"
# colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
colors = ["#FF6F61", "#6B5B95", "#88B04B", "#F7CAC9"]
# Generate pie chart for Task 1
task1_labels = list(task_counts[1].keys())
task1_values = list(task_counts[1].values())
# fig_task1 = Figure()
# ax1 = fig_task1.add_subplot(1, 1, 1)
# ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90)
# ax1.set_title('Ideal Task 1 Distribution')
fig_task1 = go.Figure(data=[go.Pie(
labels=task1_labels,
values=task1_values,
textinfo='percent+label',
textposition='auto',
marker=dict(colors=colors),
sort=False
)])
fig_task1.update_layout(
title='Problem Type: ER',
title_x=0.5,
font=dict(
family="sans-serif",
size=12,
color="black"
),
)
fig_task1.update_layout(
legend=dict(
font=dict(
family="sans-serif",
size=12,
color="black"
),
)
)
# fig.show()
# Generate pie chart for Task 2
task2_labels = list(task_counts[2].keys())
task2_values = list(task_counts[2].values())
fig_task2 = go.Figure(data=[go.Pie(
labels=task2_labels,
values=task2_values,
textinfo='percent+label',
textposition='auto',
marker=dict(colors=colors),
sort=False
# pull=[0, 0.2, 0, 0] # for pulling part of pie chart out (depends on position)
)])
fig_task2.update_layout(
title='Problem Type: ME',
title_x=0.5,
font=dict(
family="sans-serif",
size=12,
color="black"
),
)
fig_task2.update_layout(
legend=dict(
font=dict(
family="sans-serif",
size=12,
color="black"
),
)
)
# fig_task2 = Figure()
# ax2 = fig_task2.add_subplot(1, 1, 1)
# ax2.pie(task2_values, labels=task2_labels, autopct='%1.1f%%', startangle=90)
# ax2.set_title('Ideal Task 2 Distribution')
# print(output_summary)
progress(0.2, desc="analysis done!! Executing models")
print("finetuned task: ",finetune_task)
# subprocess.run([
# "python", "new_test_saved_finetuned_model.py",
# "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
# "-finetune_task", finetune_task,
# "-test_dataset_path","../../../../selected_rows.txt",
# # "-test_label_path","../../../../train_label.txt",
# "-finetuned_bert_classifier_checkpoint",
# "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
# "-e",str(1),
# "-b",str(1000)
# ])
progress(0.6,desc="Model execution completed")
result = {}
with open("result.txt", 'r') as file:
for line in file:
key, value = line.strip().split(': ', 1)
# print(type(key))
if key=='epoch':
result[key]=value
else:
result[key]=float(value)
result["ROC score of HGR"]=high_roc_auc
result["ROC score of LGR"]=low_roc_auc
# Create a plot
with open("roc_data.pkl", "rb") as f:
fpr, tpr, _ = pickle.load(f)
# print(fpr,tpr)
roc_auc = auc(fpr, tpr)
# Create a matplotlib figure
# fig = Figure()
# ax = fig.add_subplot(1, 1, 1)
# ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
# ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
# ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')
# ax.legend(loc="lower right")
# ax.grid()
fig = go.Figure()
# Create and style traces
fig.add_trace(go.Line(x = list(fpr), y = list(tpr), name=f'ROC curve (area = {roc_auc:.2f})',
line=dict(color='royalblue', width=3,
) # dash options include 'dash', 'dot', and 'dashdot'
))
fig.add_trace(go.Line(x = [0,1], y = [0,1], showlegend = False,
line=dict(color='firebrick', width=2,
dash='dash',) # dash options include 'dash', 'dot', and 'dashdot'
))
# Edit the layout
fig.update_layout(
showlegend = True,
title_x=0.5,
title=dict(
text='Receiver Operating Curve (ROC)'
),
xaxis=dict(
title=dict(
text='False Positive Rate'
)
),
yaxis=dict(
title=dict(
text='False Negative Rate'
)
),
font=dict(
family="sans-serif",
color="black"
),
)
fig.update_layout(
legend=dict(
x=0.75,
y=0,
traceorder="normal",
font=dict(
family="sans-serif",
size=12,
color="black"
),
)
)
# Save plot to a file
# plot_path = "plot.png"
# fig.savefig(plot_path)
# plt.close(fig)
progress(1.0)
# Prepare text output
text_output = f"Model: {model_name}\nResult:\n{result}"
# Prepare text output with HTML formatting
text_output = f"""
---------------------------
Model: {model_name}
---------------------------\n
Time Taken: {result['time_taken_from_start']:.2f} seconds
Total Schools in test: {len(unique_schools):.4f}
Total number of instances having Schools with HGR : {len(high_sample):.4f}
Total number of instances having Schools with LGR: {len(low_sample):.4f}
ROC score of HGR: {high_roc_auc:.4f}
ROC score of LGR: {low_roc_auc:.4f}
ROC-AUC for problems of type ER: {opt_task1_roc_auc:.4f}
ROC-AUC for problems of type ME: {opt_task2_roc_auc:.4f}
"""
return text_output,fig,fig_task1,fig_task2
# List of models for the dropdown menu
# models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"]
models = ["ASTRA-FT-HGR", "ASTRA-FT-FULL"]
content = """
<h1 style="color: black;">A S T R A</h1>
<h2 style="color: black;">An AI Model for Analyzing Math Strategies</h2>
<h3 style="color: white; text-align: center">
<a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color: gr.themes.colors.red; text-decoration: none;">Link To Paper</a> |
<a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> |
<a href="#" style="color: #1E90FF; text-decoration: none;">Project Page</a>
</h3>
<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the
<a href="https://www.memphis.edu" style="color: #1E90FF; text-decoration: none;">University of Memphis</a> and
<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a>
to utilize AI to improve our understanding of math learning strategies.</p>
<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT ) that learns math strategies using data
collected from hundreds of schools in the U.S. who have used Carnegie Learning’s MATHia (formerly known as Cognitive Tutor), the flagship Intelligent Tutor that is part of a core, blended math curriculum.
For this demo, we have used data from a specific domain (teaching ratio and proportions) within 7th grade math. The fine-tuning based on the pre-trained model learns to predict which strategies lead to correct vs incorrect solutions.
</p>
<p style="color: white;">In this math domain, students were given word problems related to ratio and proportions. Further, the students
were given a choice of optional tasks to work on in parallel to the main problem to demonstrate their thinking (metacognition).
The optional tasks are designed based on solving problems using Equivalent Ratios (ER) and solving using Means and Extremes/cross-multiplication (ME).
When the equivalent ratios are easy to compute (integral values), ER is much more efficient compared to ME and switching between the tasks appropriately demonstrates cognitive flexibility.
</p>
<p style="color: white;">To use the demo, please follow these steps:</p>
<ol style="color: white;">
<li style="color: white;">Select a fine-tuned model:
<ul style="color: white;">
<li style="color: white;">ASTRA-FT-HGR: Fine-tuned with a small sample of data from schools that have a high graduation rate.</li>
<li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li>
</ul>
</li>
<li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time). Note that the selected percentage is applied to both High Graduation Rate (HGR) schools and Low Graduation Rate (LGR schools).
</li>
<li style="color: white;">The results from the fine-tuned model are displayed in the dashboard:
<ul>
<li style="color: white;">The model accuracy is computed using the ROC-AUC metric.
</li>
<li style="color: white;">The results are shown for HGR, LGR schools and for different problem types (ER/ME).
</li>
<li style="color: white;">The distribution over how students utilized the optional tasks (whether they utilized ER/ME, used both of them or none of them) is shown for each problem type.
</li>
</ul>
</li>
</ol>
"""
# CSS styling for white text
# Create the Gradio interface
available_themes = {
"default": gr.themes.Default(),
"soft": gr.themes.Soft(),
"monochrome": gr.themes.Monochrome(),
"glass": gr.themes.Glass(),
"base": gr.themes.Base(),
}
# Comprehensive CSS for all HTML elements
custom_css = '''
/* Import Fira Sans font */
@import url('https://fonts.googleapis.com/css2?family=Fira+Sans:wght@400;500;600;700&family=Inter:wght@400;500;600;700&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Libre+Caslon+Text:ital,wght@0,400;0,700;1,400&family=Spectral+SC:wght@600&display=swap');
/* Container modifications for centering */
.gradio-container {
color: var(--block-label-text-color) !important;
max-width: 1000px !important;
margin: 0 auto !important;
padding: 2rem !important;
font-family: Arial, sans-serif !important;
}
/* Main title (ASTRA) */
#title {
text-align: center !important;
margin: 1rem auto !important; /* Reduced margin */
font-size: 2.5em !important;
font-weight: 600 !important;
font-family: "Spectral SC", 'Fira Sans', sans-serif !important;
padding-bottom: 0 !important; /* Remove bottom padding */
}
/* Subtitle (An AI Model...) */
h1 {
text-align: center !important;
font-size: 30pt !important;
font-weight: 600 !important;
font-family: "Spectral SC", 'Fira Sans', sans-serif !important;
margin-top: 0.5em !important; /* Reduced top margin */
margin-bottom: 0.3em !important;
}
h2 {
text-align: center !important;
font-size: 22pt !important;
font-weight: 600 !important;
font-family: "Spectral SC",'Fira Sans', sans-serif !important;
margin-top: 0.2em !important; /* Reduced top margin */
margin-bottom: 0.3em !important;
}
/* Links container styling */
.links-container {
text-align: center !important;
margin: 1em auto !important;
font-family: 'Inter' ,'Fira Sans', sans-serif !important;
}
/* Links */
a {
color: #2563eb !important;
text-decoration: none !important;
font-family:'Inter' , 'Fira Sans', sans-serif !important;
}
a:hover {
text-decoration: underline !important;
opacity: 0.8;
}
/* Regular text */
p, li, .description, .markdown-text {
font-family: 'Inter', Arial, sans-serif !important;
color: black !important;
font-size: 11pt;
line-height: 1.6;
font-weight: 500 !important;
color: var(--block-label-text-color) !important;
}
/* Other headings */
h3, h4, h5 {
font-family: 'Fira Sans', sans-serif !important;
color: var(--block-label-text-color) !important;
margin-top: 1.5em;
margin-bottom: 0.75em;
}
h3 { font-size: 1.5em; font-weight: 600; }
h4 { font-size: 1.25em; font-weight: 500; }
h5 { font-size: 1.1em; font-weight: 500; }
/* Form elements */
.select-wrap select, .wrap select,
input, textarea {
font-family: 'Inter' ,Arial, sans-serif !important;
color: var(--block-label-text-color) !important;
}
/* Lists */
ul, ol {
margin-left: 0 !important;
margin-bottom: 1.25em;
padding-left: 2em;
}
li {
margin-bottom: 0.75em;
}
/* Form container */
.form-container {
max-width: 1000px !important;
margin: 0 auto !important;
padding: 1rem !important;
}
/* Dashboard */
.dashboard {
margin-top: 2rem !important;
padding: 1rem !important;
border-radius: 8px !important;
}
/* Slider styling */
.gradio-slider-row {
display: flex;
align-items: center;
justify-content: space-between;
margin: 1.5em 0;
max-width: 100% !important;
}
.gradio-slider {
flex-grow: 1;
margin-right: 15px;
}
.slider-percentage {
font-family: 'Inter', Arial, sans-serif !important;
flex-shrink: 0;
min-width: 60px;
font-size: 1em;
font-weight: bold;
text-align: center;
background-color: #f0f8ff;
border: 1px solid #004080;
border-radius: 5px;
padding: 5px 10px;
}
.progress-bar-wrap.progress-bar-wrap.progress-bar-wrap
{
border-radius: var(--input-radius);
height: 1.25rem;
margin-top: 1rem;
overflow: hidden;
width: 70%;
font-family: 'Inter', Arial, sans-serif !important;
}
/* Add these new styles after your existing CSS */
/* Card-like appearance for the dashboard */
.dashboard {
background: #ffffff !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;
border-radius: 12px !important;
padding: 2rem !important;
margin-top: 2.5rem !important;
}
/* Enhance ROC graph container */
#roc {
background: #ffffff !important;
padding: 1.5rem !important;
border-radius: 8px !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
margin: 1.5rem 0 !important;
}
/* Style the dropdown select */
select {
background-color: #ffffff !important;
border: 1px solid #e2e8f0 !important;
border-radius: 8px !important;
padding: 0.5rem 1rem !important;
transition: all 0.2s ease-in-out !important;
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;
}
select:hover {
border-color: #cbd5e1 !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
}
/* Enhance slider appearance */
.progress-bar-wrap {
background: #f8fafc !important;
border: 1px solid #e2e8f0 !important;
box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05) !important;
}
/* Style metrics in dashboard */
.dashboard p {
padding: 0.5rem 0 !important;
border-bottom: 1px solid #f1f5f9 !important;
}
/* Add spacing between sections */
.dashboard > div {
margin-bottom: 1.5rem !important;
}
/* Style the ROC curve title */
.dashboard h4 {
color: #1e293b !important;
font-weight: 600 !important;
margin-bottom: 1rem !important;
padding-bottom: 0.5rem !important;
border-bottom: 2px solid #e2e8f0 !important;
}
/* Enhance link appearances */
a {
position: relative !important;
padding-bottom: 2px !important;
transition: all 0.2s ease-in-out !important;
}
a:after {
content: '' !important;
position: absolute !important;
width: 0 !important;
height: 1px !important;
bottom: 0 !important;
left: 0 !important;
background-color: #2563eb !important;
transition: width 0.3s ease-in-out !important;
}
a:hover:after {
width: 100% !important;
}
/* Add subtle dividers between sections */
.form-container > div {
padding-bottom: 1.5rem !important;
margin-bottom: 1.5rem !important;
border-bottom: 1px solid #f1f5f9 !important;
}
/* Style model selection section */
.select-wrap {
background: #ffffff !important;
padding: 1.5rem !important;
border-radius: 8px !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
margin-bottom: 2rem !important;
}
/* Style the metrics display */
.dashboard span {
font-family: 'Inter', sans-serif !important;
font-weight: 500 !important;
color: #334155 !important;
}
/* Add subtle animation to interactive elements */
button, select, .slider-percentage {
transition: all 0.2s ease-in-out !important;
}
/* Style the ROC curve container */
.plot-container {
background: #ffffff !important;
border-radius: 8px !important;
padding: 1rem !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
}
/* Add container styles for opt1 and opt2 sections */
#opt1, #opt2 {
background: #ffffff !important;
border-radius: 8px !important;
padding: 1.5rem !important;
margin-top: 1.5rem !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;
}
/* Style the distribution titles */
.distribution-title {
font-family: 'Inter', sans-serif !important;
font-weight: 600 !important;
color: #1e293b !important;
margin-bottom: 1rem !important;
text-align: center !important;
}
'''
with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
# gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
gr.Markdown(content)
with gr.Row():
# file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
# label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")
# info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
model_dropdown = gr.Dropdown(
choices=models,
label="Select Fine-tuned Model",
elem_classes="dropdown-menu"
)
increment_slider = gr.Slider(
minimum=1,
maximum=100,
step=1,
label="Schools Percentage",
value=1,
elem_id="increment-slider",
elem_classes="gradio-slider"
)
with gr.Row():
btn = gr.Button("Submit")
gr.Markdown("<p class='description'>Dashboard</p>")
with gr.Row():
output_text = gr.Textbox(label="")
# output_image = gr.Image(label="ROC")
with gr.Row():
plot_output = gr.Plot(label="ROC")
with gr.Row():
opt1_pie = gr.Plot(label="ER")
opt2_pie = gr.Plot(label="ME")
# output_summary = gr.Textbox(label="Summary")
btn.click(
fn=process_file,
inputs=[model_dropdown,increment_slider],
outputs=[output_text,plot_output,opt1_pie,opt2_pie]
)
# Launch the app
demo.launch() |