File size: 29,370 Bytes
fab9c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bffd338
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
import gradio as gr
from huggingface_hub import hf_hub_download
import pickle
from gradio import Progress
import numpy as np
import subprocess
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import pandas as pd
import plotly.graph_objects as go
from sklearn.metrics import roc_auc_score
from matplotlib.figure import Figure
# Define the function to process the input file and model selection

def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
    # progress = gr.Progress(track_tqdm=True)

    progress(0, desc="Starting the processing") 
    # with open(file.name, 'r') as f:
    #     content = f.read()
    # saved_test_dataset = "train.txt"
    # saved_test_label = "train_label.txt"
    # saved_train_info="train_info.txt"
    # Save the uploaded file content to a specified location
    # shutil.copyfile(file.name, saved_test_dataset)
    # shutil.copyfile(label.name, saved_test_label)
    # shutil.copyfile(info.name, saved_train_info)
    parent_location="ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/"
    test_info_location=parent_location+"fullTest/test_info.txt"
    test_location=parent_location+"fullTest/test.txt"
    if(model_name=="ASTRA-FT-HGR"):
        finetune_task="highGRschool10"
        # test_info_location=parent_location+"fullTest/test_info.txt"
        # test_location=parent_location+"fullTest/test.txt"
    elif(model_name== "ASTRA-FT-LGR" ):
        finetune_task="lowGRschoolAll"
        # test_info_location=parent_location+"lowGRschoolAll/test_info.txt"
        # test_location=parent_location+"lowGRschoolAll/test.txt"
    elif(model_name=="ASTRA-FT-FULL"):
        # test_info_location=parent_location+"fullTest/test_info.txt"
        # test_location=parent_location+"fullTest/test.txt"
        finetune_task="fullTest"
    else:
        finetune_task=None
    # Load the test_info file and the graduation rate file
    test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')
    grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate'])  # Load the grad_rate data

    # Step 1: Extract unique school numbers from test_info
    unique_schools = test_info[0].unique()

    # Step 2: Filter the grad_rate_data using the unique school numbers
    schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]

    # Define a threshold for high and low graduation rates (adjust as needed)
    grad_rate_threshold = 0.9  

    # Step 4: Divide schools into high and low graduation rate groups
    high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()
    low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()

    # Step 5: Sample percentage of schools from each group
    high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()
    low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()

    # Step 6: Combine the sampled schools
    random_schools = high_sample + low_sample

    # Step 7: Get indices for the sampled schools
    indices = test_info[test_info[0].isin(random_schools)].index.tolist()
    high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
    low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
    
    # Load the test file and select rows based on indices
    test = pd.read_csv(test_location, sep=',', header=None, engine='python')
    selected_rows_df2 = test.loc[indices]

    # Save the selected rows to a file
    selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')

    graduation_groups = [
    'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
    ]
    # Group data by opt_task1 and opt_task2 based on test_info[6]
    opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index]
    
    with open("roc_data2.pkl", 'rb') as file:
        data = pickle.load(file)
    t_label=data[0]
    p_label=data[1]
    # Step 1: Align graduation_group, t_label, and p_label
    aligned_labels = list(zip(graduation_groups, t_label, p_label))
    opt_task_aligned = list(zip(opt_task_groups, t_label, p_label))
    # Step 2: Separate the labels for high and low groups
    high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
    low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']

    high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
    low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']

    opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1']
    opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1']

    opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2']
    opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2']

    high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
    low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None

    opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None
    opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None

    # For demonstration purposes, we'll just return the content with the selected model name

    # print(checkpoint)
    progress(0.1, desc="Files created and saved")
    # if (inc_val<5):
    #     model_name="highGRschool10"
    # elif(inc_val>=5 & inc_val<10):
    #     model_name="highGRschool10"
    # else:
    #     model_name="highGRschool10"
    # Function to analyze each row
    def analyze_row(row):
    # Split the row into fields
        fields = row.split("\t")

        # Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
        optional_task_1_subtasks = ["DenominatorFactor", "NumeratorFactor", "EquationAnswer"]
        optional_task_2_subtasks = [
            "FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2", 
            "SecondRow", "ThirdRow"
        ]

        # Helper function to evaluate task attempts
        def evaluate_tasks(fields, tasks):
            task_status = {}
            for task in tasks:
                relevant_attempts = [f for f in fields if task in f]
                if any("OK" in attempt for attempt in relevant_attempts):
                    task_status[task] = "Attempted (Successful)"
                elif any("ERROR" in attempt for attempt in relevant_attempts):
                    task_status[task] = "Attempted (Error)"
                elif any("JIT" in attempt for attempt in relevant_attempts):
                    task_status[task] = "Attempted (JIT)"
                else:
                    task_status[task] = "Unattempted"
            return task_status

        # Evaluate tasks for each category
        optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
        optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)

        # Check if tasks have any successful attempt
        opt1_done = any(status == "Attempted (Successful)" for status in optional_task_1_status.values())
        opt2_done = any(status == "Attempted (Successful)" for status in optional_task_2_status.values())

        return opt1_done, opt2_done

    # Read data from test_info.txt
    with open(test_info_location, "r") as file:
        data = file.readlines()

    # Assuming test_info[7] is a list with ideal tasks for each instance
    ideal_tasks = test_info[6]  # A list where each element is either 1 or 2

    # Initialize counters
    task_counts = {
    1: {"ER": 0, "ME": 0, "both": 0,"none":0},
    2: {"ER": 0, "ME": 0, "both": 0,"none":0}
    }

    # Analyze rows
    for i, row in enumerate(data):
        row = row.strip()
        if not row:
            continue

        ideal_task = ideal_tasks[i]  # Get the ideal task for the current row
        opt1_done, opt2_done = analyze_row(row)

        if ideal_task == 0:
            if opt1_done and not opt2_done:
                task_counts[1]["ER"] += 1
            elif not opt1_done and opt2_done:
                task_counts[1]["ME"] += 1
            elif opt1_done and opt2_done:
                task_counts[1]["both"] += 1
            else:
                task_counts[1]["none"] +=1
        elif ideal_task == 1:
            if opt1_done and not opt2_done:
                task_counts[2]["ER"] += 1
            elif not opt1_done and opt2_done:
                task_counts[2]["ME"] += 1
            elif opt1_done and opt2_done:
                task_counts[2]["both"] += 1
            else:
                task_counts[2]["none"] +=1

    # Create a string output for results
    # output_summary = "Task Analysis Summary:\n"
    # output_summary += "-----------------------\n"

    # for ideal_task, counts in task_counts.items():
    #     output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
    #     output_summary += f"  Only OptionalTask_1 done: {counts['ER']}\n"
    #     output_summary += f"  Only OptionalTask_2 done: {counts['ME']}\n"
    #     output_summary += f"  Both done: {counts['both']}\n"

    # colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']
    colors = ["#FF6F61", "#6B5B95", "#88B04B", "#F7CAC9"]

  # Generate pie chart for Task 1
    task1_labels = list(task_counts[1].keys())
    task1_values = list(task_counts[1].values())

    # fig_task1 = Figure()
    # ax1 = fig_task1.add_subplot(1, 1, 1)
    # ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90)
    # ax1.set_title('Ideal Task 1 Distribution')

    fig_task1 = go.Figure(data=[go.Pie(
        labels=task1_labels,
        values=task1_values,
        textinfo='percent+label',
        textposition='auto',
        marker=dict(colors=colors),
        sort=False
       
    )])

    fig_task1.update_layout(
        title='Problem Type: ER',
        title_x=0.5,
        font=dict(
            family="sans-serif",
            size=12,
            color="black"
        ),
    )

    fig_task1.update_layout(
    legend=dict(
        font=dict(
            family="sans-serif",
            size=12,
            color="black"
            ),
        )
    )
    


    # fig.show()

    # Generate pie chart for Task 2
    task2_labels = list(task_counts[2].keys())
    task2_values = list(task_counts[2].values())

    fig_task2 = go.Figure(data=[go.Pie(
        labels=task2_labels,
        values=task2_values,
        textinfo='percent+label',
        textposition='auto',
        marker=dict(colors=colors),
        sort=False
        # pull=[0, 0.2, 0, 0] # for pulling part of pie chart out (depends on position)
        
    )])

    fig_task2.update_layout(
        title='Problem Type: ME',
        title_x=0.5,
        font=dict(
            family="sans-serif",
            size=12,
            color="black"
        ),
    )

    fig_task2.update_layout(
    legend=dict(
        font=dict(
            family="sans-serif",
            size=12,
            color="black"
            ),
        )
    )


    # fig_task2 = Figure()
    # ax2 = fig_task2.add_subplot(1, 1, 1)
    # ax2.pie(task2_values, labels=task2_labels, autopct='%1.1f%%', startangle=90)
    # ax2.set_title('Ideal Task 2 Distribution')

    # print(output_summary)

    progress(0.2, desc="analysis done!! Executing models")
    print("finetuned task: ",finetune_task)
    # subprocess.run([
    #     "python", "new_test_saved_finetuned_model.py",
    #     "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
    #     "-finetune_task", finetune_task,
    #     "-test_dataset_path","../../../../selected_rows.txt",
    #     # "-test_label_path","../../../../train_label.txt",
    #     "-finetuned_bert_classifier_checkpoint", 
    #     "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
    #     "-e",str(1),
    #     "-b",str(1000)
    # ])
    progress(0.6,desc="Model execution completed")
    result = {}
    with open("result.txt", 'r') as file:
        for line in file:
            key, value = line.strip().split(': ', 1)
            # print(type(key))
            if key=='epoch':
                result[key]=value
            else:
                 result[key]=float(value)
    result["ROC score of HGR"]=high_roc_auc
    result["ROC score of LGR"]=low_roc_auc
# Create a plot
    with open("roc_data.pkl", "rb") as f:
        fpr, tpr, _ = pickle.load(f)
    # print(fpr,tpr)
    roc_auc = auc(fpr, tpr)


#  Create a matplotlib figure
    # fig = Figure()
    # ax = fig.add_subplot(1, 1, 1)
    # ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
    # ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
    # ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)')
    # ax.legend(loc="lower right")
    # ax.grid()

    fig = go.Figure()
    # Create and style traces
    fig.add_trace(go.Line(x = list(fpr), y = list(tpr), name=f'ROC curve (area = {roc_auc:.2f})',
                            line=dict(color='royalblue', width=3,
                                ) # dash options include 'dash', 'dot', and 'dashdot'
    ))
    fig.add_trace(go.Line(x = [0,1], y = [0,1], showlegend = False,
                            line=dict(color='firebrick', width=2,
                                dash='dash',) # dash options include 'dash', 'dot', and 'dashdot'
    ))

    # Edit the layout
    fig.update_layout(
            showlegend = True,
            title_x=0.5,
            title=dict(
                text='Receiver Operating Curve (ROC)'
            ),
            xaxis=dict(
                title=dict(
                    text='False Positive Rate'
                )
            ),
            yaxis=dict(
                title=dict(
                    text='False Negative Rate'
                )
            ),
            font=dict(
            family="sans-serif",
            color="black"
            ),
        
    )
    fig.update_layout(
    legend=dict(
        x=0.75,
        y=0,
        traceorder="normal",
        font=dict(
            family="sans-serif",
            size=12,
            color="black"
            ),
        )
    )






    # Save plot to a file
    # plot_path = "plot.png"
    # fig.savefig(plot_path)
    # plt.close(fig)


    

    progress(1.0)
    # Prepare text output
    text_output = f"Model: {model_name}\nResult:\n{result}"
    # Prepare text output with HTML formatting
    text_output = f"""

    ---------------------------

    Model: {model_name}

    ---------------------------\n

    Time Taken: {result['time_taken_from_start']:.2f} seconds

    Total Schools in test: {len(unique_schools):.4f}

    Total number of instances having Schools with HGR : {len(high_sample):.4f}

    Total number of instances having Schools with LGR: {len(low_sample):.4f}



    ROC score of HGR: {high_roc_auc:.4f}

    ROC score of LGR: {low_roc_auc:.4f}



    ROC-AUC for problems of type ER: {opt_task1_roc_auc:.4f}

    ROC-AUC for problems of type ME: {opt_task2_roc_auc:.4f}

    """
    return text_output,fig,fig_task1,fig_task2

# List of models for the dropdown menu

# models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"]
models = ["ASTRA-FT-HGR", "ASTRA-FT-FULL"]
content = """

<h1 style="color: black;">A S T R A</h1>

<h2 style="color: black;">An AI Model for Analyzing Math Strategies</h2>



<h3 style="color: white; text-align: center">

    <a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color: gr.themes.colors.red; text-decoration: none;">Link To Paper</a> | 

    <a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> | 

    <a href="#" style="color: #1E90FF; text-decoration: none;">Project Page</a>

</h3>



<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the 

<a href="https://www.memphis.edu" style="color: #1E90FF; text-decoration: none;">University of Memphis</a> and 

<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a> 

to utilize AI to improve our understanding of math learning strategies.</p>



<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT ) that learns math strategies using data 

collected from hundreds of schools in the U.S. who have used Carnegie Learning’s MATHia (formerly known as Cognitive Tutor), the flagship Intelligent Tutor that is part of a core, blended math curriculum. 

For this demo, we have used data from a specific domain (teaching ratio and proportions) within 7th grade math. The fine-tuning based on the pre-trained model learns to predict which strategies lead to correct vs incorrect solutions. 

</p>



<p style="color: white;">In this math domain, students were given word problems related to ratio and proportions. Further, the students 

were given a choice of optional tasks to work on in parallel to the main problem to demonstrate  their thinking (metacognition). 

The optional tasks are designed based on solving problems using Equivalent Ratios (ER) and solving using Means and Extremes/cross-multiplication (ME).

When the equivalent ratios are easy to compute (integral values), ER is much more efficient compared to ME and switching between the tasks appropriately demonstrates cognitive flexibility.

</p>



<p style="color: white;">To use the demo, please follow these steps:</p>



<ol style="color: white;">

    <li style="color: white;">Select a fine-tuned model:

        <ul style="color: white;">

            <li style="color: white;">ASTRA-FT-HGR: Fine-tuned with a small sample of data from schools that have a high graduation rate.</li>

            <li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li>

        </ul>

    </li>

    <li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time). Note that the selected percentage is applied to both High Graduation Rate (HGR) schools and Low Graduation Rate (LGR schools).

</li>

    <li style="color: white;">The results from the fine-tuned model are displayed in the dashboard:

        <ul>

            <li style="color: white;">The model accuracy is computed using the ROC-AUC metric.

</li>

            <li style="color: white;">The results are shown for HGR, LGR schools and  for different problem types (ER/ME). 

</li>

<li style="color: white;">The distribution over how students utilized the optional tasks (whether they utilized ER/ME, used both of them or none of them) is shown for each problem type. 

</li>

        </ul>

    </li>

</ol>

"""
# CSS styling for white text
# Create the Gradio interface
available_themes = {
    "default": gr.themes.Default(),
    "soft": gr.themes.Soft(),
    "monochrome": gr.themes.Monochrome(),
    "glass": gr.themes.Glass(),
    "base": gr.themes.Base(),
}

# Comprehensive CSS for all HTML elements
custom_css = '''

/* Import Fira Sans font */

@import url('https://fonts.googleapis.com/css2?family=Fira+Sans:wght@400;500;600;700&family=Inter:wght@400;500;600;700&display=swap');

@import url('https://fonts.googleapis.com/css2?family=Libre+Caslon+Text:ital,wght@0,400;0,700;1,400&family=Spectral+SC:wght@600&display=swap');

/* Container modifications for centering */

.gradio-container {

    color: var(--block-label-text-color) !important;

    max-width: 1000px !important;

    margin: 0 auto !important;

    padding: 2rem !important;

    font-family: Arial, sans-serif !important;

}



/* Main title (ASTRA) */

#title {

    text-align: center !important;

    margin: 1rem auto !important;  /* Reduced margin */

    font-size: 2.5em !important;

    font-weight: 600 !important;

    font-family: "Spectral SC", 'Fira Sans', sans-serif !important;

    padding-bottom: 0 !important;  /* Remove bottom padding */

}



/* Subtitle (An AI Model...) */

h1 {

    text-align: center !important;

    font-size: 30pt !important;

    font-weight: 600 !important;

    font-family: "Spectral SC", 'Fira Sans', sans-serif !important;

    margin-top: 0.5em !important;  /* Reduced top margin */

    margin-bottom: 0.3em !important;

}



h2 {

    text-align: center !important;

    font-size: 22pt !important;

    font-weight: 600 !important;

    font-family: "Spectral SC",'Fira Sans', sans-serif !important;

    margin-top: 0.2em !important;  /* Reduced top margin */

    margin-bottom: 0.3em !important;

}



/* Links container styling */

.links-container {

    text-align: center !important;

    margin: 1em auto !important;

    font-family: 'Inter' ,'Fira Sans', sans-serif !important;

}



/* Links */

a {

    color: #2563eb !important;

    text-decoration: none !important;

    font-family:'Inter' , 'Fira Sans', sans-serif !important;

}



a:hover {

    text-decoration: underline !important;

    opacity: 0.8;

}



/* Regular text */

p, li, .description, .markdown-text {

    font-family: 'Inter', Arial, sans-serif !important;

    color: black !important;

    font-size: 11pt;

    line-height: 1.6;

    font-weight: 500 !important;

    color: var(--block-label-text-color) !important;

}



/* Other headings */

h3, h4, h5 {

    font-family: 'Fira Sans', sans-serif !important;

    color: var(--block-label-text-color) !important;

    margin-top: 1.5em;

    margin-bottom: 0.75em;

}





h3 { font-size: 1.5em; font-weight: 600; }

h4 { font-size: 1.25em; font-weight: 500; }

h5 { font-size: 1.1em; font-weight: 500; }



/* Form elements */

.select-wrap select, .wrap select,

input, textarea {

    font-family: 'Inter' ,Arial, sans-serif !important;

    color: var(--block-label-text-color) !important;

}



/* Lists */

ul, ol {

    margin-left: 0 !important;

    margin-bottom: 1.25em;

    padding-left: 2em;

}



li {

    margin-bottom: 0.75em;

}



/* Form container */

.form-container {

    max-width: 1000px !important;

    margin: 0 auto !important;

    padding: 1rem !important;

}



/* Dashboard */

.dashboard {

    margin-top: 2rem !important;

    padding: 1rem !important;

    border-radius: 8px !important;

}



/* Slider styling */

.gradio-slider-row {

    display: flex;

    align-items: center;

    justify-content: space-between;

    margin: 1.5em 0;

    max-width: 100% !important;

}



.gradio-slider {

    flex-grow: 1;

    margin-right: 15px;

}



.slider-percentage {

    font-family: 'Inter', Arial, sans-serif !important;

    flex-shrink: 0;

    min-width: 60px;

    font-size: 1em;

    font-weight: bold;

    text-align: center;

    background-color: #f0f8ff;

    border: 1px solid #004080;

    border-radius: 5px;

    padding: 5px 10px;

}



.progress-bar-wrap.progress-bar-wrap.progress-bar-wrap

{

	border-radius: var(--input-radius);

	height: 1.25rem;

	margin-top: 1rem;

	overflow: hidden;

	width: 70%;

    font-family: 'Inter', Arial, sans-serif !important;

}



/* Add these new styles after your existing CSS */



/* Card-like appearance for the dashboard */

.dashboard {

    background: #ffffff !important;

    box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06) !important;

    border-radius: 12px !important;

    padding: 2rem !important;

    margin-top: 2.5rem !important;

}



/* Enhance ROC graph container */

#roc {

    background: #ffffff !important;

    padding: 1.5rem !important;

    border-radius: 8px !important;

    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;

    margin: 1.5rem 0 !important;

}



/* Style the dropdown select */

select {

    background-color: #ffffff !important;

    border: 1px solid #e2e8f0 !important;

    border-radius: 8px !important;

    padding: 0.5rem 1rem !important;

    transition: all 0.2s ease-in-out !important;

    box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05) !important;

}



select:hover {

    border-color: #cbd5e1 !important;

    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;

}



/* Enhance slider appearance */

.progress-bar-wrap {

    background: #f8fafc !important;

    border: 1px solid #e2e8f0 !important;

    box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.05) !important;

}



/* Style metrics in dashboard */

.dashboard p {

    padding: 0.5rem 0 !important;

    border-bottom: 1px solid #f1f5f9 !important;

}



/* Add spacing between sections */

.dashboard > div {

    margin-bottom: 1.5rem !important;

}



/* Style the ROC curve title */

.dashboard h4 {

    color: #1e293b !important;

    font-weight: 600 !important;

    margin-bottom: 1rem !important;

    padding-bottom: 0.5rem !important;

    border-bottom: 2px solid #e2e8f0 !important;

}



/* Enhance link appearances */

a {

    position: relative !important;

    padding-bottom: 2px !important;

    transition: all 0.2s ease-in-out !important;

}



a:after {

    content: '' !important;

    position: absolute !important;

    width: 0 !important;

    height: 1px !important;

    bottom: 0 !important;

    left: 0 !important;

    background-color: #2563eb !important;

    transition: width 0.3s ease-in-out !important;

}



a:hover:after {

    width: 100% !important;

}



/* Add subtle dividers between sections */

.form-container > div {

    padding-bottom: 1.5rem !important;

    margin-bottom: 1.5rem !important;

    border-bottom: 1px solid #f1f5f9 !important;

}



/* Style model selection section */

.select-wrap {

    background: #ffffff !important;

    padding: 1.5rem !important;

    border-radius: 8px !important;

    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;

    margin-bottom: 2rem !important;

}



/* Style the metrics display */

.dashboard span {

    font-family: 'Inter', sans-serif !important;

    font-weight: 500 !important;

    color: #334155 !important;

}



/* Add subtle animation to interactive elements */

button, select, .slider-percentage {

    transition: all 0.2s ease-in-out !important;

}



/* Style the ROC curve container */

.plot-container {

    background: #ffffff !important;

    border-radius: 8px !important;

    padding: 1rem !important;

    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;

}



/* Add container styles for opt1 and opt2 sections */

#opt1, #opt2 {

    background: #ffffff !important;

    border-radius: 8px !important;

    padding: 1.5rem !important;

    margin-top: 1.5rem !important;

    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05) !important;

}



/* Style the distribution titles */

.distribution-title {

    font-family: 'Inter', sans-serif !important;

    font-weight: 600 !important;

    color: #1e293b !important;

    margin-bottom: 1rem !important;

    text-align: center !important;

}



'''

with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
    
    # gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
    gr.Markdown(content)
    
    with gr.Row():
        # file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
        # label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")

        # info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
        model_dropdown = gr.Dropdown(
            choices=models,
            label="Select Fine-tuned Model",
            elem_classes="dropdown-menu"
        )
        increment_slider = gr.Slider(
            minimum=1,
            maximum=100,
            step=1,
            label="Schools Percentage",
            value=1,
            elem_id="increment-slider",
            elem_classes="gradio-slider"
        )
    
    with gr.Row():
        btn = gr.Button("Submit")

    gr.Markdown("<p class='description'>Dashboard</p>")

    with gr.Row():
        output_text = gr.Textbox(label="")
        # output_image = gr.Image(label="ROC")
    with gr.Row():
        plot_output = gr.Plot(label="ROC")

    with gr.Row():
        opt1_pie = gr.Plot(label="ER")
        opt2_pie = gr.Plot(label="ME")
        # output_summary = gr.Textbox(label="Summary")

    
 
    btn.click(
        fn=process_file, 
        inputs=[model_dropdown,increment_slider], 
        outputs=[output_text,plot_output,opt1_pie,opt2_pie]
    )


# Launch the app
demo.launch()