Spaces:
Running
Running
added csv downloadable function for path analysis tool
Browse files- app.py +115 -34
- fileHandler/output_task0_label0.csv +0 -0
- fileHandler/output_task0_label1.csv +0 -0
- fileHandler/output_task1_label0.csv +0 -0
- fileHandler/output_task1_label1.csv +0 -0
- fileHandler/result.txt +1 -1
- fileHandler/tlabels_plabels.pkl +3 -0
- new_test_saved_finetuned_model.py +3 -1
app.py
CHANGED
@@ -11,6 +11,8 @@ import pandas as pd
|
|
11 |
import plotly.graph_objects as go
|
12 |
from sklearn.metrics import roc_auc_score
|
13 |
from matplotlib.figure import Figure
|
|
|
|
|
14 |
# Define the function to process the input file and model selection
|
15 |
|
16 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
@@ -85,25 +87,25 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
85 |
|
86 |
selected_test_info = test_info.loc[indices]
|
87 |
|
88 |
-
# First 20%
|
89 |
-
first_20_percent_indices = selected_test_info.groupby(3).apply(
|
90 |
-
|
91 |
-
).index.get_level_values(1).tolist()
|
92 |
|
93 |
-
# Last 20%
|
94 |
-
last_20_percent_indices = selected_test_info.groupby(3).apply(
|
95 |
-
|
96 |
-
).index.get_level_values(1).tolist()
|
97 |
|
98 |
-
# Select the corresponding rows from the test file
|
99 |
-
first_20_percent_rows = test.loc[first_20_percent_indices]
|
100 |
-
last_20_percent_rows = test.loc[last_20_percent_indices]
|
101 |
|
102 |
-
# Save the first 20% instances per student to a file
|
103 |
-
first_20_percent_rows.to_csv('fileHandler/selected_rows_first20.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
104 |
|
105 |
-
# Save the last 20% instances per student to a file
|
106 |
-
last_20_percent_rows.to_csv('fileHandler/selected_rows_last20.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
107 |
|
108 |
# select the graduation groups
|
109 |
graduation_groups = [
|
@@ -125,6 +127,65 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
125 |
"-b",str(1000)
|
126 |
])
|
127 |
progress(0.5,desc="Model execution completed!! Now performing analysis on the results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
with open("fileHandler/roc_data2.pkl", 'rb') as file:
|
129 |
data = pickle.load(file)
|
130 |
t_label=data[0]
|
@@ -622,11 +683,11 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
622 |
# "-e",str(1),
|
623 |
# "-b",str(1000)
|
624 |
# ])
|
625 |
-
with open("fileHandler/roc_data.pkl", "rb") as f:
|
626 |
-
|
627 |
-
# print(fpr,tpr)
|
628 |
-
roc_auc_first_k = auc(fpr, tpr)
|
629 |
-
print(roc_auc_first_k)
|
630 |
|
631 |
|
632 |
progress(0.5,desc="last '%' sampling")
|
@@ -641,23 +702,23 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
641 |
# "-e",str(1),
|
642 |
# "-b",str(1000)
|
643 |
# ])
|
644 |
-
with open("fileHandler/roc_data.pkl", "rb") as f:
|
645 |
-
|
646 |
-
# print(fpr,tpr)
|
647 |
-
roc_auc_last_k = auc(fpr, tpr)
|
648 |
-
print(roc_auc_last_k)
|
649 |
|
650 |
|
651 |
|
652 |
-
text_output_sampled_auc = f"""
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
|
657 |
-
|
658 |
-
|
659 |
|
660 |
-
"""
|
661 |
|
662 |
|
663 |
|
@@ -1030,6 +1091,19 @@ button, select, .slider-percentage {
|
|
1030 |
}
|
1031 |
|
1032 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1033 |
|
1034 |
with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
|
1035 |
|
@@ -1077,9 +1151,16 @@ with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
|
|
1077 |
# with gr.Row():
|
1078 |
# output_text_sampled_auc = gr.Textbox(label="")
|
1079 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1080 |
|
1081 |
-
|
1082 |
-
|
1083 |
btn.click(
|
1084 |
fn=process_file,
|
1085 |
inputs=[model_dropdown,increment_slider],
|
|
|
11 |
import plotly.graph_objects as go
|
12 |
from sklearn.metrics import roc_auc_score
|
13 |
from matplotlib.figure import Figure
|
14 |
+
import csv
|
15 |
+
# import os
|
16 |
# Define the function to process the input file and model selection
|
17 |
|
18 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
|
87 |
|
88 |
selected_test_info = test_info.loc[indices]
|
89 |
|
90 |
+
# # First 20%
|
91 |
+
# first_20_percent_indices = selected_test_info.groupby(3).apply(
|
92 |
+
# lambda x: x.head(int(len(x) * 0.2))
|
93 |
+
# ).index.get_level_values(1).tolist()
|
94 |
|
95 |
+
# # Last 20%
|
96 |
+
# last_20_percent_indices = selected_test_info.groupby(3).apply(
|
97 |
+
# lambda x: x.tail(int(len(x) * 0.2))
|
98 |
+
# ).index.get_level_values(1).tolist()
|
99 |
|
100 |
+
# # Select the corresponding rows from the test file
|
101 |
+
# first_20_percent_rows = test.loc[first_20_percent_indices]
|
102 |
+
# last_20_percent_rows = test.loc[last_20_percent_indices]
|
103 |
|
104 |
+
# # Save the first 20% instances per student to a file
|
105 |
+
# first_20_percent_rows.to_csv('fileHandler/selected_rows_first20.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
106 |
|
107 |
+
# # Save the last 20% instances per student to a file
|
108 |
+
# last_20_percent_rows.to_csv('fileHandler/selected_rows_last20.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
109 |
|
110 |
# select the graduation groups
|
111 |
graduation_groups = [
|
|
|
127 |
"-b",str(1000)
|
128 |
])
|
129 |
progress(0.5,desc="Model execution completed!! Now performing analysis on the results")
|
130 |
+
|
131 |
+
# Load tlb and plb
|
132 |
+
with open("fileHandler/tlabels_plabels.pkl", "rb") as f:
|
133 |
+
tlb, plb = pickle.load(f)
|
134 |
+
|
135 |
+
# Define function to filter and write CSV
|
136 |
+
def process_and_write_csv(filtered_data, filename):
|
137 |
+
headers = [
|
138 |
+
"Row", "Sample Name", "Transaction Id", "Anon Student Id", "Session Id", "Time Zone", "Duration (sec)",
|
139 |
+
"Student Response Type", "Student Response Subtype", "Tutor Response Type", "Tutor Response Subtype",
|
140 |
+
"Level (Workspace Id)", "Problem Name", "Problem View", "Problem Start Time", "Step Name",
|
141 |
+
"Attempt At Step", "Is Last Attempt", "Outcome", "Selection", "Action", "Input", "Feedback Text",
|
142 |
+
"Feedback Classification", "Help Level", "Total Num Hints", "KC (MATHia)", "KC Category (MATHia)",
|
143 |
+
"KC (Single-KC)", "KC Category (Single-KC)", "KC (Unique-step)", "KC Category (Unique-step)",
|
144 |
+
"School", "Class", "CF (Ruleid)", "CF (Semantic Event Id)", "CF (Skill New p-Known)",
|
145 |
+
"CF (Skill Previous p-Known)", "CF (Workspace Progress Status)", "Event Type"
|
146 |
+
]
|
147 |
+
|
148 |
+
with open("fileHandler/" + filename, 'w', newline='') as outfile:
|
149 |
+
writer = csv.writer(outfile)
|
150 |
+
writer.writerow(headers)
|
151 |
+
|
152 |
+
row_num = 1
|
153 |
+
for _, row in filtered_data.iterrows():
|
154 |
+
school, class_id, student_id, status, problem, _, time_zone, duration, attempts = row[:9]
|
155 |
+
steps_data = row[8]
|
156 |
+
|
157 |
+
for step in steps_data.split('\t'):
|
158 |
+
step_parts = step.split('-')
|
159 |
+
step_name = step_parts[0]
|
160 |
+
action = step_parts[1] if len(step_parts) > 1 else ""
|
161 |
+
attempt = step_parts[2] if len(step_parts) > 2 else ""
|
162 |
+
outcome = step_parts[-1] if len(step_parts) > 3 else ""
|
163 |
+
|
164 |
+
row_data = [
|
165 |
+
row_num, "", "", student_id, "", time_zone, duration, "", "", "", "",
|
166 |
+
problem, problem, "", "", step_name, attempt, "", outcome, "", action, "", "", "", "", "", "", "", "", "", "","",
|
167 |
+
school, class_id, "", "", "", "", "PROMOTED"
|
168 |
+
]
|
169 |
+
writer.writerow(row_data)
|
170 |
+
row_num += 1
|
171 |
+
|
172 |
+
print(f"CSV file '{filename}' created successfully.")
|
173 |
+
|
174 |
+
# Find indices where conditions match
|
175 |
+
for task_type in [0, 1]: # test_info[6] = 1 or 2
|
176 |
+
for label in [0, 1]: # tlb = plb = 0 or 1
|
177 |
+
matching_indices = [i for i in range(len(tlb)) if tlb[i] == plb[i] == label]
|
178 |
+
|
179 |
+
# Filter the data
|
180 |
+
filtered_data = selected_test_info.iloc[matching_indices]
|
181 |
+
filtered_data = filtered_data[filtered_data[6] == task_type] # Ensure test_info[6] matches
|
182 |
+
|
183 |
+
# Define filename dynamically
|
184 |
+
filename = f"output_task{task_type}_label{label}.csv"
|
185 |
+
|
186 |
+
# Write to CSV
|
187 |
+
process_and_write_csv(filtered_data, filename)
|
188 |
+
|
189 |
with open("fileHandler/roc_data2.pkl", 'rb') as file:
|
190 |
data = pickle.load(file)
|
191 |
t_label=data[0]
|
|
|
683 |
# "-e",str(1),
|
684 |
# "-b",str(1000)
|
685 |
# ])
|
686 |
+
# with open("fileHandler/roc_data.pkl", "rb") as f:
|
687 |
+
# fpr, tpr, _ = pickle.load(f)
|
688 |
+
# # print(fpr,tpr)
|
689 |
+
# roc_auc_first_k = auc(fpr, tpr)
|
690 |
+
# print(roc_auc_first_k)
|
691 |
|
692 |
|
693 |
progress(0.5,desc="last '%' sampling")
|
|
|
702 |
# "-e",str(1),
|
703 |
# "-b",str(1000)
|
704 |
# ])
|
705 |
+
# with open("fileHandler/roc_data.pkl", "rb") as f:
|
706 |
+
# fpr, tpr, _ = pickle.load(f)
|
707 |
+
# # print(fpr,tpr)
|
708 |
+
# roc_auc_last_k = auc(fpr, tpr)
|
709 |
+
# print(roc_auc_last_k)
|
710 |
|
711 |
|
712 |
|
713 |
+
# text_output_sampled_auc = f"""
|
714 |
+
# ---------------------------
|
715 |
+
# Model: {model_name}
|
716 |
+
# ---------------------------\n
|
717 |
|
718 |
+
# ROC score of first 20% of problems: {roc_auc_first_k:.4f}
|
719 |
+
# ROC score of last 20% of problems: {roc_auc_last_k:.4f}
|
720 |
|
721 |
+
# """
|
722 |
|
723 |
|
724 |
|
|
|
1091 |
}
|
1092 |
|
1093 |
'''
|
1094 |
+
# Define the file directory
|
1095 |
+
FILE_DIR = "fileHandler"
|
1096 |
+
|
1097 |
+
# Function to get list of files
|
1098 |
+
def list_files():
|
1099 |
+
return ['output_task0_label0.csv', 'output_task0_label1.csv', 'output_task1_label0.csv', 'output_task1_label1.csv']
|
1100 |
+
# return [f for f in os.listdir(FILE_DIR) if os.path.isfile(os.path.join(FILE_DIR, f))]
|
1101 |
+
|
1102 |
+
# Function to provide the selected file path
|
1103 |
+
def provide_file_path(file_name):
|
1104 |
+
return f"{FILE_DIR}/{file_name}" if file_name else None
|
1105 |
+
# file_path = os.path.join(FILE_DIR, file_name)
|
1106 |
+
# return file_path
|
1107 |
|
1108 |
with gr.Blocks(theme='gstaff/sketch', css=custom_css) as demo:
|
1109 |
|
|
|
1151 |
# with gr.Row():
|
1152 |
# output_text_sampled_auc = gr.Textbox(label="")
|
1153 |
|
1154 |
+
with gr.Row():
|
1155 |
+
file_dropdown = gr.Dropdown(choices=list_files(), label="Generate File")
|
1156 |
+
download_button = gr.Button("Generate files")
|
1157 |
+
|
1158 |
+
download_button.click(
|
1159 |
+
fn=provide_file_path,
|
1160 |
+
inputs=[file_dropdown],
|
1161 |
+
outputs=[gr.File(label="Your Download is ready, click on the right side to download")]
|
1162 |
+
)
|
1163 |
|
|
|
|
|
1164 |
btn.click(
|
1165 |
fn=process_file,
|
1166 |
inputs=[model_dropdown,increment_slider],
|
fileHandler/output_task0_label0.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fileHandler/output_task0_label1.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fileHandler/output_task1_label0.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fileHandler/output_task1_label1.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fileHandler/result.txt
CHANGED
@@ -3,5 +3,5 @@ total_acc: 69.00702106318957
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
-
time_taken_from_start:
|
7 |
auc_score: 0.7457100293916334
|
|
|
3 |
precisions: 0.7236623191454734
|
4 |
recalls: 0.6900702106318957
|
5 |
f1_scores: 0.6802420656474512
|
6 |
+
time_taken_from_start: 36.14206862449646
|
7 |
auc_score: 0.7457100293916334
|
fileHandler/tlabels_plabels.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1aabcfeb64b7645738d0507dd755822b92f2a256a2f0bdee28b2916268078eb
|
3 |
+
size 37993
|
new_test_saved_finetuned_model.py
CHANGED
@@ -226,7 +226,9 @@ class BERTFineTuneTrainer:
|
|
226 |
with open("fileHandler/roc_data.pkl", "wb") as f:
|
227 |
pickle.dump((fpr, tpr, thresholds), f)
|
228 |
with open("fileHandler/roc_data2.pkl", "wb") as f:
|
229 |
-
pickle.dump((tlabels,positive_class_probs), f)
|
|
|
|
|
230 |
print(final_msg)
|
231 |
f.close()
|
232 |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
|
|
|
226 |
with open("fileHandler/roc_data.pkl", "wb") as f:
|
227 |
pickle.dump((fpr, tpr, thresholds), f)
|
228 |
with open("fileHandler/roc_data2.pkl", "wb") as f:
|
229 |
+
pickle.dump((tlabels,positive_class_probs), f)
|
230 |
+
with open("fileHandler/tlabels_plabels.pkl", "wb") as f:
|
231 |
+
pickle.dump((tlabels,plabels), f)
|
232 |
print(final_msg)
|
233 |
f.close()
|
234 |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
|