# Astra Project Setup Instructions ## Prerequisites Make sure you have the following installed before proceeding: - Python 3.12.4 - Git - Git Large File Storage (LFS) ## Step 1: Install Git LFS Git LFS (Large File Storage) is required for managing large files in the Astra project. Follow these steps to install Git LFS: ### Windows 1. Download the Git LFS installer from [Git LFS Releases](https://git-lfs.github.com/). 2. Run the installer and follow the setup instructions. 3. Open a terminal (Command Prompt or PowerShell) and run: ```sh git lfs install ``` ### macOS 1. Install Git LFS using Homebrew: ```sh brew install git-lfs ``` 2. Initialize Git LFS: ```sh git lfs install ``` ### Linux 1. Install Git LFS using your package manager: - Debian/Ubuntu: ```sh sudo apt install git-lfs ``` - Fedora: ```sh sudo dnf install git-lfs ``` - Arch Linux: ```sh sudo pacman -S git-lfs ``` 2. Initialize Git LFS: ```sh git lfs install ``` ## Step 2: Install Python (Alternative: pyenv) While Python 3.12.4 is required, it is recommended to use `pyenv` if you want to work with multiple Python versions or if you encounter errors while installing dependencies. ### Installing pyenv #### macOS & Linux: ```sh curl https://pyenv.run | bash ``` After installation, restart your terminal and install Python: ```sh pyenv install 3.12.4 pyenv global 3.12.4 ``` #### Windows: Use [pyenv-win](https://github.com/pyenv-win/pyenv-win): ```sh git clone https://github.com/pyenv-win/pyenv-win.git ~/.pyenv setx PYENV "%USERPROFILE%\.pyenv" setx PATH "%PYENV%\bin;%PYENV%\shims;%PATH%" pyenv install 3.12.4 pyenv global 3.12.4 ``` ## Step 3: Clone the Repository Clone the Astra project repository using Git: ```sh git clone cd astra ``` ## Step 4: Install Dependencies Install all required dependencies from the `requirements.txt` file: ```sh pip install -r requirements.txt ``` ## Step 5: Verify Installation Ensure all dependencies are installed correctly by running: ```sh python --version pip list ``` ## Step 6: Run the Application or Test the Model You have two options to proceed: ### Option 1: Run the Gradio App To open the Gradio app in your web browser and interact with the application, run: ```sh python app.py ``` ### Option 2: Test the Model with a Sample File To test the fine-tuned model using a sample file, navigate to the root folder of the project and run the following command: ```sh cd python new_test_saved_finetuned_model.py \ -workspace_name "ratio_proportion_change3_2223/sch_largest_100-coded" \ -finetune_task "" \ -test_dataset_path "../../../../fileHandler/selected_rows.txt" \ -finetuned_bert_classifier_checkpoint "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42" \ -e 1 \ -b 1000 ``` Replace `` with the actual fine-tuning task value. Your Astra project should now be fully set up and ready to use!