Spaces:
Runtime error
Runtime error
File size: 30,921 Bytes
120efdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 31,
"id": "1a305246-59d9-453e-9903-ca462611f1eb",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Product</th>\n",
" <th>Review</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Queen Size sheet Set</td>\n",
" <td>I ordered a king size set.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Waterproof Phone Pcuch</td>\n",
" <td>I loved the waterproof sac</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Luxury Air Mattress</td>\n",
" <td>This mattress had a small hole in the top</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Pillows Insert</td>\n",
" <td>this is the best pillow filters on amazon</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Milk Frother Handheld\\nm</td>\n",
" <td>I loved this product But they only seem to I</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Product Review\n",
"0 Queen Size sheet Set I ordered a king size set.\n",
"1 Waterproof Phone Pcuch I loved the waterproof sac\n",
"2 Luxury Air Mattress This mattress had a small hole in the top\n",
"3 Pillows Insert this is the best pillow filters on amazon\n",
"4 Milk Frother Handheld\\nm I loved this product But they only seem to I"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import openai\n",
"import os\n",
"\n",
"from dotenv import load_dotenv, find_dotenv\n",
"_ = load_dotenv(find_dotenv())\n",
"import pandas as pd\n",
"\n",
"df = pd.read_csv('Data.csv')\n",
"df.head()\n"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "8f75bedd-2b00-466a-a00f-bc7c47f2f7a8",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "edc76aa3-1d1f-41d2-93a9-8297268817ea",
"metadata": {},
"outputs": [],
"source": [
"llm = ChatOpenAI(temperature=0.9)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "27f2d3c9-9601-4b31-8d35-bae9538ee2a0",
"metadata": {},
"outputs": [],
"source": [
"# Prompt template 1\n",
"prompt = ChatPromptTemplate.from_template(\"what is the best name to describe a company that make {product}\")"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "03ef9080-77ba-4406-a402-e4d5b889be47",
"metadata": {},
"outputs": [],
"source": [
"# Chain 1\n",
"chain = LLMChain(llm=llm, prompt=prompt)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "0a172ea1-18ce-407b-bcd9-b4146c5f5610",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1. Royal Comfort Linens\\n2. Majestic Bedding Co.\\n3. Crowned Sleep Essentials\\n4. Regal Dreams Bedding\\n5. Luxurious Queen Linens\\n6. Elite Serenity Bedding\\n7. Imperial Queen Bedding\\n8. Opulence Bed Linens\\n9. Grandeur Sleep Essentials\\n10. Prestige Queen Linens'"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"product = \"Queen Size Sheet Set\"\n",
"chain.run(product)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "b0ff950c-1c09-4ba5-8661-626fb69b24ca",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new SimpleSequentialChain chain...\u001b[0m\n",
"\u001b[36;1m\u001b[1;3mRoyal Comfort Linens\u001b[0m\n",
"\u001b[33;1m\u001b[1;3mRoyal Comfort Linens is a luxurious bedding company that offers high-quality and stylish linens for a truly regal sleep experience.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Royal Comfort Linens is a luxurious bedding company that offers high-quality and stylish linens for a truly regal sleep experience.'"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import SimpleSequentialChain\n",
"# Prompt Template 2\n",
"prompt_2 = ChatPromptTemplate.from_template(\"Write a 20 words description for the following company: {company_name}\")\n",
"\n",
"# chain 2\n",
"chain_two = LLMChain(llm=llm, prompt=prompt_2)\n",
"\n",
"overall_simple_chain = SimpleSequentialChain(chains=[chain, chain_two], verbose=True)\n",
"overall_simple_chain.run(product)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "8ab602a8-9871-4881-b3eb-fbc1e9a90e08",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import SequentialChain"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "7101b29c-cc62-48ed-925c-962c9da6c40b",
"metadata": {},
"outputs": [],
"source": [
"llm_model = 'gpt-3.5-turbo'\n",
"llm = ChatOpenAI(temperature=0.9, model=llm_model)\n",
"\n",
"# prompt template 1: translate to english\n",
"first_prompt = ChatPromptTemplate.from_template(\n",
" \"Translate the following review to english:\"\n",
" \"\\n\\n{Review}\"\n",
")\n",
"# chain 1: input= Review and output= English_Review\n",
"chain_one = LLMChain(llm=llm, prompt=first_prompt, \n",
" output_key=\"English_Review\"\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "cd8f164e-e91e-4fa5-a27a-40714aacdc32",
"metadata": {},
"outputs": [],
"source": [
"second_prompt = ChatPromptTemplate.from_template(\n",
" \"Can you summarize the following review in 1 sentence:\"\n",
" \"\\n\\n{English_Review}\"\n",
")\n",
"# chain 2: input= English_Review and output= summary\n",
"chain_two = LLMChain(llm=llm, prompt=second_prompt, \n",
" output_key=\"summary\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "6a77ec8a-d5da-4889-9803-1676a03d046b",
"metadata": {},
"outputs": [],
"source": [
"# prompt template 3: translate to english\n",
"third_prompt = ChatPromptTemplate.from_template(\n",
" \"What language is the following review:\\n\\n{Review}\"\n",
")\n",
"# chain 3: input= Review and output= language\n",
"chain_three = LLMChain(llm=llm, prompt=third_prompt,\n",
" output_key=\"language\"\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "5fd5d216-74f1-4c73-9ba5-008a57398d65",
"metadata": {},
"outputs": [],
"source": [
"# prompt template 4: follow up message\n",
"fourth_prompt = ChatPromptTemplate.from_template(\n",
" \"Write a follow up response to the following \"\n",
" \"summary in the specified language:\"\n",
" \"\\n\\nSummary: {summary}\\n\\nLanguage: {language}\"\n",
")\n",
"# chain 4: input= summary, language and output= followup_message\n",
"chain_four = LLMChain(llm=llm, prompt=fourth_prompt,\n",
" output_key=\"followup_message\"\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "6217843a-4244-48da-8622-0f753984a8f4",
"metadata": {},
"outputs": [],
"source": [
"# overall_chain: input= Review \n",
"# and output= English_Review,summary, followup_message\n",
"overall_chain = SequentialChain(\n",
" chains=[chain_one, chain_two, chain_three, chain_four],\n",
" input_variables=[\"Review\"],\n",
" output_variables=[\"English_Review\", \"summary\",\"followup_message\"],\n",
" verbose=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "2c58c69a-e943-4257-a61c-579ca6eb8f4f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new SequentialChain chain...\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"{'Review': ' this is the best pillow filters on amazon',\n",
" 'English_Review': 'Este es el mejor filtro de almohadas en Amazon.',\n",
" 'summary': 'This is the best pillow filter on Amazon.',\n",
" 'followup_message': \"Response: Thank you for your review! We appreciate your feedback and we're glad to hear that you think our pillow filter is the best on Amazon. We strive to provide high-quality products to our customers, and your satisfaction is our top priority. If you have any further questions or need assistance, please don't hesitate to reach out.\"}"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"review = df.Review[3]\n",
"overall_chain(review)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "c5f9c68b-020b-418a-842f-f2c32f958389",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Product</th>\n",
" <th>Review</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Queen Size sheet Set</td>\n",
" <td>I ordered a king size set.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Waterproof Phone Pcuch</td>\n",
" <td>I loved the waterproof sac</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Luxury Air Mattress</td>\n",
" <td>This mattress had a small hole in the top</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Pillows Insert</td>\n",
" <td>this is the best pillow filters on amazon</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Milk Frother Handheld\\nm</td>\n",
" <td>I loved this product But they only seem to I</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Product Review\n",
"0 Queen Size sheet Set I ordered a king size set.\n",
"1 Waterproof Phone Pcuch I loved the waterproof sac\n",
"2 Luxury Air Mattress This mattress had a small hole in the top\n",
"3 Pillows Insert this is the best pillow filters on amazon\n",
"4 Milk Frother Handheld\\nm I loved this product But they only seem to I"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "27355bcf-2787-470d-a41a-ea5b5565a68a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 Queen Size sheet Set\n",
"1 Waterproof Phone Pcuch\n",
"2 Luxury Air Mattress\n",
"3 Pillows Insert\n",
"4 Milk Frother Handheld\\nm\n",
"Name: Product, dtype: object"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['Product']"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "8de4ae55-2cab-43fd-a2e9-542157919cbb",
"metadata": {},
"outputs": [],
"source": [
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise\\\n",
"and easy to understand manner. \\\n",
"When you don't know the answer to a question you admit\\\n",
"that you don't know.\n",
"\n",
"Here is a question:\n",
"{input}\"\"\"\n",
"\n",
"\n",
"math_template = \"\"\"You are a very good mathematician. \\\n",
"You are great at answering math questions. \\\n",
"You are so good because you are able to break down \\\n",
"hard problems into their component parts, \n",
"answer the component parts, and then put them together\\\n",
"to answer the broader question.\n",
"\n",
"Here is a question:\n",
"{input}\"\"\"\n",
"\n",
"history_template = \"\"\"You are a very good historian. \\\n",
"You have an excellent knowledge of and understanding of people,\\\n",
"events and contexts from a range of historical periods. \\\n",
"You have the ability to think, reflect, debate, discuss and \\\n",
"evaluate the past. You have a respect for historical evidence\\\n",
"and the ability to make use of it to support your explanations \\\n",
"and judgements.\n",
"\n",
"Here is a question:\n",
"{input}\"\"\"\n",
"\n",
"\n",
"computerscience_template = \"\"\" You are a successful computer scientist.\\\n",
"You have a passion for creativity, collaboration,\\\n",
"forward-thinking, confidence, strong problem-solving capabilities,\\\n",
"understanding of theories and algorithms, and excellent communication \\\n",
"skills. You are great at answering coding questions. \\\n",
"You are so good because you know how to solve a problem by \\\n",
"describing the solution in imperative steps \\\n",
"that a machine can easily interpret and you know how to \\\n",
"choose a solution that has a good balance between \\\n",
"time complexity and space complexity. \n",
"\n",
"Here is a question:\n",
"{input}\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "ec18c579-c130-490f-ad56-a2acd4f8bd60",
"metadata": {},
"outputs": [],
"source": [
"prompt_infos = [\n",
" {\n",
" \"name\": \"physics\", \n",
" \"description\": \"Good for answering questions about physics\", \n",
" \"prompt_template\": physics_template\n",
" },\n",
" {\n",
" \"name\": \"math\", \n",
" \"description\": \"Good for answering math questions\", \n",
" \"prompt_template\": math_template\n",
" },\n",
" {\n",
" \"name\": \"History\", \n",
" \"description\": \"Good for answering history questions\", \n",
" \"prompt_template\": history_template\n",
" },\n",
" {\n",
" \"name\": \"computer science\", \n",
" \"description\": \"Good for answering computer science questions\", \n",
" \"prompt_template\": computerscience_template\n",
" }\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "b38acbf5-d22c-4951-b2e0-c2beed545474",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.router import MultiPromptChain\n",
"from langchain.chains.router.llm_router import LLMRouterChain,RouterOutputParser\n",
"from langchain.prompts import PromptTemplate\n",
"\n",
"llm = ChatOpenAI(temperature=0, model=llm_model)"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "eecb95b3-38ed-4433-a918-8febfe1945d0",
"metadata": {},
"outputs": [],
"source": [
"destination_chains = {}\n",
"for p_info in prompt_infos:\n",
" name = p_info[\"name\"]\n",
" prompt_template = p_info[\"prompt_template\"]\n",
" prompt = ChatPromptTemplate.from_template(template=prompt_template)\n",
" chain = LLMChain(llm=llm, prompt=prompt)\n",
" destination_chains[name] = chain \n",
" \n",
"destinations = [f\"{p['name']}: {p['description']}\" for p in prompt_infos]\n",
"destinations_str = \"\\n\".join(destinations)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "228a3439-008d-47cd-ac10-fca1eccba51c",
"metadata": {},
"outputs": [],
"source": [
"default_prompt = ChatPromptTemplate.from_template(\"{input}\")\n",
"default_chain = LLMChain(llm=llm, prompt=default_prompt)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "8b393708-04d1-40ab-a8ed-a1862d00b326",
"metadata": {},
"outputs": [],
"source": [
"MULTI_PROMPT_ROUTER_TEMPLATE = \"\"\"Given a raw text input to a \\\n",
"language model select the model prompt best suited for the input. \\\n",
"You will be given the names of the available prompts and a \\\n",
"description of what the prompt is best suited for. \\\n",
"You may also revise the original input if you think that revising\\\n",
"it will ultimately lead to a better response from the language model.\n",
"\n",
"<< FORMATTING >>\n",
"Return a markdown code snippet with a JSON object formatted to look like:\n",
"```json\n",
"{{{{\n",
" \"destination\": string \\ name of the prompt to use or \"DEFAULT\"\n",
" \"next_inputs\": string \\ a potentially modified version of the original input\n",
"}}}}\n",
"```\n",
"\n",
"REMEMBER: \"destination\" MUST be one of the candidate prompt \\\n",
"names specified below OR it can be \"DEFAULT\" if the input is not\\\n",
"well suited for any of the candidate prompts.\n",
"REMEMBER: \"next_inputs\" can just be the original input \\\n",
"if you don't think any modifications are needed.\n",
"\n",
"<< CANDIDATE PROMPTS >>\n",
"{destinations}\n",
"\n",
"<< INPUT >>\n",
"{{input}}\n",
"\n",
"<< OUTPUT (remember to include the ```json)>>\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "2f40b20c-89ed-4217-9176-60a9ab5d45d2",
"metadata": {},
"outputs": [],
"source": [
"router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(\n",
" destinations=destinations_str\n",
")\n",
"router_prompt = PromptTemplate(\n",
" template=router_template,\n",
" input_variables=[\"input\"],\n",
" output_parser=RouterOutputParser(),\n",
")\n",
"\n",
"router_chain = LLMRouterChain.from_llm(llm, router_prompt)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "f89d7a92-3696-4fb9-890a-36f5bd6d3752",
"metadata": {},
"outputs": [],
"source": [
"chain = MultiPromptChain(router_chain=router_chain, \n",
" destination_chains=destination_chains, \n",
" default_chain=default_chain, verbose=True\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "449208c8-2b58-4770-bb45-ae3c0778b432",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sushantgo/Downloads/conda/lib/python3.11/site-packages/langchain/chains/llm.py:280: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"physics: {'input': 'What is black body radiation?'}\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Black body radiation refers to the electromagnetic radiation emitted by an object that absorbs all incident radiation and reflects or transmits none. It is called \"black body\" because it absorbs all wavelengths of light, appearing black at room temperature. \\n\\nAccording to Planck\\'s law, black body radiation is characterized by a continuous spectrum of wavelengths and intensities, which depend on the temperature of the object. As the temperature increases, the peak intensity of the radiation shifts to shorter wavelengths, resulting in a change in color from red to orange, yellow, white, and eventually blue at very high temperatures.\\n\\nBlack body radiation is a fundamental concept in physics and has various applications, including understanding the behavior of stars, explaining the cosmic microwave background radiation, and developing technologies like incandescent light bulbs and thermal imaging devices.'"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"What is black body radiation?\")"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "5c204f5e-5d20-4061-b08c-ad61999d3107",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n",
"math: {'input': 'what is 2 + 2'}\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"Thank you for your kind words! As a mathematician, I am happy to help with any math questions, no matter how simple or complex they may be.\\n\\nNow, let's solve the problem at hand. The question is asking for the sum of 2 and 2. To find the answer, we can simply add the two numbers together:\\n\\n2 + 2 = 4\\n\\nTherefore, the sum of 2 and 2 is 4.\""
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"what is 2 + 2\")"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "60de9868-1821-414e-9564-3847c62dbef9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n",
"biology: {'input': 'Why does every cell in our body contain DNA?'}"
]
},
{
"ename": "ValueError",
"evalue": "Received invalid destination chain name 'biology'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[59], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mWhy does every cell in our body contain DNA?\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Downloads/conda/lib/python3.11/site-packages/langchain/chains/base.py:487\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 486\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supports only one positional argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 487\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m 488\u001b[0m _output_key\n\u001b[1;32m 489\u001b[0m ]\n\u001b[1;32m 491\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m 492\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(kwargs, callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n\u001b[1;32m 493\u001b[0m _output_key\n\u001b[1;32m 494\u001b[0m ]\n",
"File \u001b[0;32m~/Downloads/conda/lib/python3.11/site-packages/langchain/chains/base.py:292\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 291\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 292\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 293\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m 294\u001b[0m final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m 295\u001b[0m inputs, outputs, return_only_outputs\n\u001b[1;32m 296\u001b[0m )\n",
"File \u001b[0;32m~/Downloads/conda/lib/python3.11/site-packages/langchain/chains/base.py:286\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m 279\u001b[0m run_manager \u001b[38;5;241m=\u001b[39m callback_manager\u001b[38;5;241m.\u001b[39mon_chain_start(\n\u001b[1;32m 280\u001b[0m dumpd(\u001b[38;5;28mself\u001b[39m),\n\u001b[1;32m 281\u001b[0m inputs,\n\u001b[1;32m 282\u001b[0m name\u001b[38;5;241m=\u001b[39mrun_name,\n\u001b[1;32m 283\u001b[0m )\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 285\u001b[0m outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 286\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 288\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m 289\u001b[0m )\n\u001b[1;32m 290\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 291\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
"File \u001b[0;32m~/Downloads/conda/lib/python3.11/site-packages/langchain/chains/router/base.py:105\u001b[0m, in \u001b[0;36mMultiRouteChain._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m 103\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdefault_chain(route\u001b[38;5;241m.\u001b[39mnext_inputs, callbacks\u001b[38;5;241m=\u001b[39mcallbacks)\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 105\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 106\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReceived invalid destination chain name \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mroute\u001b[38;5;241m.\u001b[39mdestination\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 107\u001b[0m )\n",
"\u001b[0;31mValueError\u001b[0m: Received invalid destination chain name 'biology'"
]
}
],
"source": [
"chain.run(\"Why does every cell in our body contain DNA?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9cbed99-9f90-4065-9b8f-a12de403c15a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|