Apple commited on
Commit
90dd41f
Β·
1 Parent(s): 2d62cb7

adding readme

Browse files
Files changed (1) hide show
  1. README.md +21 -5
README.md CHANGED
@@ -1,12 +1,28 @@
1
  ---
2
- title: Findbirdie
3
- emoji: πŸ’»
4
- colorFrom: pink
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 3.16.2
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Pytorch Resnet34 Bird Classification
3
+ emoji: πŸ‘€
4
+ colorFrom: yellow
5
  colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.16.1
8
  app_file: app.py
9
  pinned: false
10
+ license: gpl-3.0
11
  ---
12
 
13
+ # Pytorch Resnet34 Bird Classification
14
+
15
+ The project is an implementation of the ResNet34 model as per the [Microsoft Research Paper](https://arxiv.org/abs/1512.03385). The model is build using PyTorch and is trained on the [Birds Classification Dataset](https://www.kaggle.com/datasets/gpiosenka/100-bird-species) from Kaggle.
16
+
17
+ ## πŸš€ Getting Started
18
+
19
+ All the code for training the model and exporting to ONNX format is present in the [notebook](notebooks) folder or you can use this [Kaggle Notebook](https://www.kaggle.com/gauthamkrishnan119/pytorch-resnet34-birds-classification) for training the model. It took ~1.5 hours to train the model on the complete dataset using a P100 GPU. The [app.py](app.py) file contains the code for deploying the model using Gradio.
20
+
21
+ ## πŸ€— Demo
22
+
23
+ You can try out the model on [Hugging Face Spaces](https://huggingface.co/spaces/gauthamk/pytorch-resnet34-bird-classification)
24
+
25
+ ## πŸ–₯️ Sample Interface
26
+
27
+ ![Sample Inference](samples/sample1.png)
28
+ ![Sample Inference](samples/sample2.png)