import streamlit as st from ctransformers import AutoModelForCausalLM # Load the model llm = AutoModelForCausalLM.from_pretrained( model_path_or_repo_id="mistral-7b-instruct-v0.1.Q2_K.gguf", model_type="mistral", ) st.title("Conversational Chat with Mistral 🦙🗨️") # Function to generate response def generate_response(user_query): prompt = f"""The user query is {user_query} """ args = { "prompt": prompt, "stream": True, "max_new_tokens": 4096, "temperature": 0, } response_placeholder = st.empty() # Placeholder for displaying response chunks response_so_far = "" # Initialize empty string to store cumulative response for chunk in llm(**args): response_so_far += chunk # Append current chunk to cumulative response response_placeholder.write(response_so_far) # Display cumulative response return # No need to return anything # User input user_query = st.text_input("Enter your query:", "") if user_query: # Generate and display response generate_response(user_query)