File size: 950 Bytes
bf9ae34
5e7d2c0
 
 
bf9ae34
fa810c7
5e7d2c0
 
bf9ae34
5e7d2c0
 
 
 
 
bf9ae34
 
 
 
ed6d964
bf9ae34
 
 
ed6d964
bf9ae34
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from ctransformers import AutoModelForCausalLM
from fastapi import FastAPI
from pydantic import BaseModel

# Model loading with the new model name
llm = AutoModelForCausalLM.from_pretrained("sqlcoder-7b.Q4_K_S.gguf")

class Validation(BaseModel):
    prompt: str  # Assuming this includes both user_question and table_metadata_string

app = FastAPI()

@app.post("/generate_sql")
async def generate_sql(item: Validation):
    # Updated system prompt
    system_prompt = """### Task
Generate a SQL query to answer the following question:
`{question}`

### Database Schema
The query will run on a database with the following schema:
{schema}

### Answer
Given the database schema, here is the SQL query that answers `{question}`:
```sql
"""
    # Format the actual prompt using item.prompt
    prompt = system_prompt.format(user_question="Your question here", table_metadata_string="Your schema here")
    completion = llm(prompt)
    return completion