susnato commited on
Commit
c13b6ed
·
1 Parent(s): 03610db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -1,7 +1,6 @@
1
- import gradio as gr
2
- import numpy as np
3
  import torch
4
- from datasets import load_dataset
 
5
  from transformers import AutoProcessor, AutoModel, pipeline, MarianMTModel, MarianTokenizer
6
 
7
 
@@ -21,7 +20,7 @@ martian_mt_tokenizer = MarianTokenizer.from_pretrained("AbhirupGhosh/opus-mt-fin
21
 
22
  def translate_english_to_hindi(english_text):
23
  tokenized_text = martian_mt_tokenizer.encode(english_text, return_tensors="pt")
24
- generated_token_ids = martian_mt_model.generate(tokenized_text)
25
  hindi_text = martian_mt_tokenizer.decode(generated_token_ids.numpy()[0])
26
  hindi_text = hindi_text.replace("</s>", "")
27
  hindi_text = hindi_text.replace("<pad>", "")
@@ -30,21 +29,22 @@ def translate_english_to_hindi(english_text):
30
 
31
 
32
  def translate_to_english(audio):
33
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe"})
34
  return outputs["text"]
35
 
36
  def synthesise(text):
37
- inputs = processor(text=text, return_tensors="pt")
38
- speech_values = model.generate(**inputs)
39
  speech_values = speech_values.cpu().numpy()
40
-
41
  return speech_values
42
 
43
  def speech_to_hindi_translation(audio):
44
  english_text = translate_to_english(audio)
45
  hindi_text = translate_english_to_hindi(english_text)
46
- synthesised_speech = synthesise(hindi_text)
47
  synthesised_speech = (synthesised_speech * 32767).astype(np.int16)
 
48
  return 22050, synthesised_speech
49
 
50
 
@@ -67,7 +67,7 @@ file_translate = gr.Interface(
67
  fn=speech_to_hindi_translation,
68
  inputs=gr.Audio(source="upload", type="filepath"),
69
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
70
- # examples=[["./example.wav"]],
71
  title=title,
72
  description=description,
73
  )
 
 
 
1
  import torch
2
+ import numpy as np
3
+ import gradio as gr
4
  from transformers import AutoProcessor, AutoModel, pipeline, MarianMTModel, MarianTokenizer
5
 
6
 
 
20
 
21
  def translate_english_to_hindi(english_text):
22
  tokenized_text = martian_mt_tokenizer.encode(english_text, return_tensors="pt")
23
+ generated_token_ids = martian_mt_model.generate(tokenized_text, use_cache=True)
24
  hindi_text = martian_mt_tokenizer.decode(generated_token_ids.numpy()[0])
25
  hindi_text = hindi_text.replace("</s>", "")
26
  hindi_text = hindi_text.replace("<pad>", "")
 
29
 
30
 
31
  def translate_to_english(audio):
32
+ outputs = asr_pipe(audio, generate_kwargs={"task": "transcribe", "use_cache":"True"})
33
  return outputs["text"]
34
 
35
  def synthesise(text):
36
+ inputs = processor(text=text, return_tensors="pt").to(device)
37
+ speech_values = model.generate(**inputs, use_cache=True)
38
  speech_values = speech_values.cpu().numpy()
39
+
40
  return speech_values
41
 
42
  def speech_to_hindi_translation(audio):
43
  english_text = translate_to_english(audio)
44
  hindi_text = translate_english_to_hindi(english_text)
45
+ synthesised_speech = synthesise(hindi_text)[0]
46
  synthesised_speech = (synthesised_speech * 32767).astype(np.int16)
47
+
48
  return 22050, synthesised_speech
49
 
50
 
 
67
  fn=speech_to_hindi_translation,
68
  inputs=gr.Audio(source="upload", type="filepath"),
69
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
70
+ examples=["/home/susnato/Downloads/example.wav"],
71
  title=title,
72
  description=description,
73
  )