File size: 3,194 Bytes
d80d101 e22bce1 2956da3 aeec854 d80d101 a969734 d80d101 a969734 d80d101 fbb4141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests
from PIL import Image
from craft_text_detector import (
read_image,
load_craftnet_model,
load_refinenet_model,
get_prediction,
export_detected_regions,
export_extra_results,
empty_cuda_cache
)
from craft_text_detector import Craft
import torch
import numpy as np
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
craft = Craft(output_dir=None,
crop_type="poly",
export_extra=False,
link_threshold=0.1,
text_threshold=0.3,
cuda=torch.cuda.is_available())
# load image examples from the IAM database
urls = ['https://cdn.shopify.com/s/files/1/0275/6457/2777/files/Penwritten_2048x.jpg']
for idx, url in enumerate(urls):
image = Image.open(requests.get(url, stream=True).raw)
image.save(f"image_{idx}.png")
def process_image(image):
img = np.array(image)
prediction_result = craft.detect_text(img)
text = []
for i,j in enumerate(prediction_result['boxes']):
roi = img[int(prediction_result['boxes'][i][0][1]): int(prediction_result['boxes'][i][2][1]),
int(prediction_result['boxes'][i][0][0]): int(prediction_result['boxes'][i][2][0])]
image = Image.fromarray(roi).convert("RGB")
pixel_values = processor(image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
text.append(generated_text)
print('line ' + str(i) + ' has been recoginized')
generated_text = ('\n').join(text)
# # prepare image
# pixel_values = processor(image, return_tensors="pt").pixel_values
# # generate (no beam search)
# generated_ids = model.generate(pixel_values)
# # decode
# generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
title = "Interactive demo: TrOCR"
description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
examples =[["image_0.png"]]
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Textbox(),
title=title,
description=description,
article=article,
examples=examples)
iface.launch(debug=True)
|