import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests from PIL import Image from craft_text_detector import ( read_image, load_craftnet_model, load_refinenet_model, get_prediction, export_detected_regions, export_extra_results, empty_cuda_cache ) from craft_text_detector import Craft import torch import numpy as np processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") craft = Craft(output_dir=None, crop_type="poly", export_extra=False, link_threshold=0.1, text_threshold=0.3, cuda=torch.cuda.is_available()) # load image examples from the IAM database urls = ['https://cdn.shopify.com/s/files/1/0275/6457/2777/files/Penwritten_2048x.jpg'] for idx, url in enumerate(urls): image = Image.open(requests.get(url, stream=True).raw) image.save(f"image_{idx}.png") def process_image(image): img = np.array(image) prediction_result = craft.detect_text(img) text = [] for i,j in enumerate(prediction_result['boxes']): roi = img[int(prediction_result['boxes'][i][0][1]): int(prediction_result['boxes'][i][2][1]), int(prediction_result['boxes'][i][0][0]): int(prediction_result['boxes'][i][2][0])] image = Image.fromarray(roi).convert("RGB") pixel_values = processor(image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] text.append(generated_text) print('line ' + str(i) + ' has been recoginized') generated_text = ('\n').join(text) # # prepare image # pixel_values = processor(image, return_tensors="pt").pixel_values # # generate (no beam search) # generated_ids = model.generate(pixel_values) # # decode # generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text title = "Interactive demo: TrOCR" description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds." article = "

TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models | Github Repo

" examples =[["image_0.png"]] iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Textbox(), title=title, description=description, article=article, examples=examples) iface.launch(debug=True)