sussahoo commited on
Commit
7610196
·
1 Parent(s): 88a2847

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +233 -104
app.py CHANGED
@@ -1,11 +1,12 @@
1
  from PIL import Image, ImageEnhance, ImageOps
2
  import string
3
- from collections import Counter
4
  from itertools import tee, count
5
  import pytesseract
6
  from pytesseract import Output
7
  import json
8
  import pandas as pd
 
9
  # import matplotlib.pyplot as plt
10
  import cv2
11
  import numpy as np
@@ -14,35 +15,65 @@ from transformers import TableTransformerForObjectDetection
14
  import torch
15
  import gradio as gr
16
 
17
- def plot_results_detection(model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
18
- plt.imshow(image)
19
- ax = plt.gca()
20
 
21
- for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()):
22
- cl = p.argmax()
23
- xmin, ymin, xmax, ymax = xmin-delta_xmin, ymin-delta_ymin, xmax+delta_xmax, ymax+delta_ymax
24
- ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color='red', linewidth=3))
25
- text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
26
- ax.text(xmin-20, ymin-50, text, fontsize=10,bbox=dict(facecolor='yellow', alpha=0.5))
27
- plt.axis('off')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
30
- '''
31
- crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
32
- '''
33
  cropped_img_list = []
34
 
35
  for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
36
 
37
- xmin, ymin, xmax, ymax = xmin-delta_xmin, ymin-delta_ymin, xmax+delta_xmax, ymax+delta_ymax
 
 
 
 
 
38
  cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
39
  cropped_img_list.append(cropped_img)
40
  return cropped_img_list
41
 
42
- def add_padding(pil_img, top, right, bottom, left, color=(255,255,255)):
43
- '''
 
44
  Image padding as part of TSR pre-processing to prevent missing table edges
45
- '''
46
  width, height = pil_img.size
47
  new_width = width + right + left
48
  new_height = height + top + bottom
@@ -50,15 +81,18 @@ def add_padding(pil_img, top, right, bottom, left, color=(255,255,255)):
50
  result.paste(pil_img, (left, top))
51
  return result
52
 
 
53
  def table_detector(image, THRESHOLD_PROBA):
54
- '''
55
  Table detection using DEtect-object TRansformer pre-trained on 1 million tables
56
- '''
57
 
58
  feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
59
  encoding = feature_extractor(image, return_tensors="pt")
60
 
61
- model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")
 
 
62
 
63
  with torch.no_grad():
64
  outputs = model(**encoding)
@@ -68,20 +102,22 @@ def table_detector(image, THRESHOLD_PROBA):
68
 
69
  target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
70
  postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
71
- bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
72
 
73
  return (model, probas[keep], bboxes_scaled)
74
 
75
 
76
  def table_struct_recog(image, THRESHOLD_PROBA):
77
- '''
78
  Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
79
- '''
80
 
81
  feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
82
  encoding = feature_extractor(image, return_tensors="pt")
83
 
84
- model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
 
 
85
  with torch.no_grad():
86
  outputs = model(**encoding)
87
 
@@ -90,16 +126,19 @@ def table_struct_recog(image, THRESHOLD_PROBA):
90
 
91
  target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
92
  postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
93
- bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
94
 
95
  return (model, probas[keep], bboxes_scaled)
96
 
97
- def generate_structure(model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
 
 
 
98
  colors = ["red", "blue", "green", "yellow", "orange", "violet"]
99
- '''
100
  Co-ordinates are adjusted here by 3 'pixels'
101
  To plot table pillow image and the TSR bounding boxes on the table
102
- '''
103
  # plt.figure(figsize=(32,20))
104
  # plt.imshow(pil_img)
105
  # ax = plt.gca()
@@ -108,33 +147,55 @@ def generate_structure(model, pil_img, prob, boxes, expand_rowcol_bbox_top, expa
108
  idx = 0
109
  for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
110
 
111
- xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
112
  cl = p.argmax()
113
  class_text = model.config.id2label[cl.item()]
114
- text = f'{class_text}: {p[cl]:0.2f}'
115
  # or (class_text == 'table column')
116
  # if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
117
- # ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2))
118
- # ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5))
119
-
120
- if class_text == 'table row':
121
- rows['table row.'+str(idx)] = (xmin, ymin-expand_rowcol_bbox_top, xmax, ymax+expand_rowcol_bbox_bottom)
122
- if class_text == 'table column':
123
- cols['table column.'+str(idx)] = (xmin, ymin-expand_rowcol_bbox_top, xmax, ymax+expand_rowcol_bbox_bottom)
 
 
 
 
 
 
 
 
 
 
124
 
125
  idx += 1
126
 
127
  # plt.axis('on')
128
  return rows, cols
129
 
130
- def sort_table_featuresv2(rows:dict, cols:dict):
 
131
  # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
132
- rows_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])}
133
- cols_ = {table_feature : (xmin, ymin, xmax, ymax) for table_feature, (xmin, ymin, xmax, ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])}
 
 
 
 
 
 
 
 
 
 
134
 
135
  return rows_, cols_
136
 
137
- def individual_table_featuresv2(pil_img, rows:dict, cols:dict):
 
138
 
139
  for k, v in rows.items():
140
  xmin, ymin, xmax, ymax = v
@@ -148,12 +209,19 @@ def individual_table_featuresv2(pil_img, rows:dict, cols:dict):
148
 
149
  return rows, cols
150
 
151
- def object_to_cellsv2(master_row:dict, cols:dict, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left):
152
- '''Removes redundant bbox for rows&columns and divides each row into cells from columns
 
 
 
 
 
 
 
153
  Args:
154
  Returns:
155
-
156
- '''
157
  cells_img = {}
158
  header_idx = 0
159
  row_idx = 0
@@ -181,7 +249,7 @@ def object_to_cellsv2(master_row:dict, cols:dict, expand_rowcol_bbox_top, expand
181
  # new_master_row[k_row] = v_row
182
  ######################################################
183
  for k_row, v_row in new_master_row.items():
184
-
185
  _, _, _, _, row_img = v_row
186
  xmax, ymax = row_img.size
187
  xa, ya, xb, yb = 0, 0, 0, ymax
@@ -201,31 +269,39 @@ def object_to_cellsv2(master_row:dict, cols:dict, expand_rowcol_bbox_top, expand
201
  xb = xmax_col
202
  if idx == 0:
203
  xa = 0
204
- if idx == len(new_cols)-1:
205
  xb = xmax
206
  xa, ya, xb, yb = xa, ya, xb, yb
207
 
208
  row_img_cropped = row_img.crop((xa, ya, xb, yb))
209
  row_img_list.append(row_img_cropped)
210
 
211
- cells_img[k_row+'.'+str(row_idx)] = row_img_list
212
  row_idx += 1
213
 
214
- return cells_img, len(new_cols), len(new_master_row)-1
 
215
 
216
  def pytess(cell_pil_img):
217
- return ' '.join(pytesseract.image_to_data(cell_pil_img, output_type=Output.DICT, config='-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces')['text']).strip()
 
 
 
 
 
 
218
 
219
- def uniquify(seq, suffs = count(1)):
 
220
  """Make all the items unique by adding a suffix (1, 2, etc).
221
  Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
222
  `seq` is mutable sequence of strings.
223
  `suffs` is an optional alternative suffix iterable.
224
  """
225
- not_unique = [k for k,v in Counter(seq).items() if v>1]
226
 
227
- suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
228
- for idx,s in enumerate(seq):
229
  try:
230
  suffix = str(next(suff_gens[s]))
231
  except KeyError:
@@ -235,34 +311,36 @@ def uniquify(seq, suffs = count(1)):
235
 
236
  return seq
237
 
 
238
  def clean_dataframe(df):
239
- '''
240
  Remove irrelevant symbols that appear with tesseractOCR
241
- '''
242
  # df.columns = [col.replace('|', '') for col in df.columns]
243
 
244
  for col in df.columns:
245
 
246
- df[col]=df[col].str.replace("'", '', regex=True)
247
- df[col]=df[col].str.replace('"', '', regex=True)
248
- df[col]=df[col].str.replace(']', '', regex=True)
249
- df[col]=df[col].str.replace('[', '', regex=True)
250
- df[col]=df[col].str.replace('{', '', regex=True)
251
- df[col]=df[col].str.replace('}', '', regex=True)
252
- df[col]=df[col].str.replace('|', '', regex=True)
253
  return df
254
 
255
- def create_dataframe(cells_pytess_result:list, max_cols:int, max_rows:int,csv_path):
256
- '''Create dataframe using list of cell values of the table, also checks for valid header of dataframe
 
257
  Args:
258
  cells_pytess_result: list of strings, each element representing a cell in a table
259
  max_cols, max_rows: number of columns and rows
260
  Returns:
261
- dataframe : final dataframe after all pre-processing
262
- '''
263
 
264
  headers = cells_pytess_result[:max_cols]
265
- new_headers = uniquify(headers, (f' {x!s}' for x in string.ascii_lowercase))
266
  counter = 0
267
 
268
  cells_list = cells_pytess_result[max_cols:]
@@ -274,10 +352,10 @@ def create_dataframe(cells_pytess_result:list, max_cols:int, max_rows:int,csv_pa
274
  df.iat[nrows, ncols] = str(cells_list[cell_idx])
275
  cell_idx += 1
276
 
277
- ## To check if there are duplicate headers if result of uniquify+col == col
278
  ## This check removes headers when all headers are empty or if median of header word count is less than 6
279
  for x, col in zip(string.ascii_lowercase, new_headers):
280
- if f' {x!s}' == col:
281
  counter += 1
282
  header_char_count = [len(col) for col in new_headers]
283
 
@@ -291,42 +369,93 @@ def create_dataframe(cells_pytess_result:list, max_cols:int, max_rows:int,csv_pa
291
 
292
  return df
293
 
294
- def process_image(image, td_threshold, tsr_threshold, padd_top, padd_left, padd_bottom, padd_right, delta_xmin, delta_ymin, delta_xmax, delta_ymax, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
295
- image = image.convert('RGB')
296
- model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=td_threshold)
297
- # plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
298
- cropped_img_list = crop_tables(image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
299
-
300
- result = []
301
- for idx, unpadded_table in enumerate(cropped_img_list):
302
- table = add_padding(unpadded_table, padd_top, padd_right, padd_bottom, padd_left)
303
- model, probas, bboxes_scaled = table_struct_recog(table, THRESHOLD_PROBA=tsr_threshold)
304
- rows, cols = generate_structure(model, table, probas, bboxes_scaled, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom)
305
- rows, cols = sort_table_featuresv2(rows, cols)
306
- master_row, cols = individual_table_featuresv2(table, rows, cols)
307
- cells_img, max_cols, max_rows = object_to_cellsv2(master_row, cols, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, padd_left)
308
- sequential_cell_img_list = []
309
- for k, img_list in cells_img.items():
310
- for img in img_list:
311
- sequential_cell_img_list.append(pytess(img))
312
-
313
- csv_path = '/content/sample_data/table_' + str(idx)
314
- df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path)
315
- result.append(df)
316
- res = result[0].to_json()
317
- return res
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318
 
319
 
320
  title = "Interactive demo OCR: microsoft - table-transformer-detection + tesseract"
321
  description = "Demo for microsoft - table-transformer-detection + tesseract"
322
  article = "<p style='text-align: center'></p>"
323
- examples =[["image_0.png"]]
324
-
325
- iface = gr.Interface(fn=process_image,
326
- inputs=[gr.Image(type="pil"), gr.Slider(0, 1, 0.9), gr.Slider(0, 1, 0.8), gr.Slider(0, 200, 100), gr.Slider(0, 200, 100), gr.Slider(0, 200, 100), gr.Slider(0, 200, 100), gr.Number(0), gr.Number(0), gr.Number(0), gr.Number(0),gr.Number(0),gr.Number(0)],
327
- outputs="text",
328
- title=title,
329
- description=description,
330
- article=article,
331
- examples=examples)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332
  iface.launch(debug=True)
 
 
1
  from PIL import Image, ImageEnhance, ImageOps
2
  import string
3
+ from collections import Counter
4
  from itertools import tee, count
5
  import pytesseract
6
  from pytesseract import Output
7
  import json
8
  import pandas as pd
9
+
10
  # import matplotlib.pyplot as plt
11
  import cv2
12
  import numpy as np
 
15
  import torch
16
  import gradio as gr
17
 
 
 
 
18
 
19
+ def plot_results_detection(
20
+ model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
21
+ ):
22
+ plt.imshow(image)
23
+ ax = plt.gca()
24
+
25
+ for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()):
26
+ cl = p.argmax()
27
+ xmin, ymin, xmax, ymax = (
28
+ xmin - delta_xmin,
29
+ ymin - delta_ymin,
30
+ xmax + delta_xmax,
31
+ ymax + delta_ymax,
32
+ )
33
+ ax.add_patch(
34
+ plt.Rectangle(
35
+ (xmin, ymin),
36
+ xmax - xmin,
37
+ ymax - ymin,
38
+ fill=False,
39
+ color="red",
40
+ linewidth=3,
41
+ )
42
+ )
43
+ text = f"{model.config.id2label[cl.item()]}: {p[cl]:0.2f}"
44
+ ax.text(
45
+ xmin - 20,
46
+ ymin - 50,
47
+ text,
48
+ fontsize=10,
49
+ bbox=dict(facecolor="yellow", alpha=0.5),
50
+ )
51
+ plt.axis("off")
52
+
53
 
54
  def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
55
+ """
56
+ crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
57
+ """
58
  cropped_img_list = []
59
 
60
  for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
61
 
62
+ xmin, ymin, xmax, ymax = (
63
+ xmin - delta_xmin,
64
+ ymin - delta_ymin,
65
+ xmax + delta_xmax,
66
+ ymax + delta_ymax,
67
+ )
68
  cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
69
  cropped_img_list.append(cropped_img)
70
  return cropped_img_list
71
 
72
+
73
+ def add_padding(pil_img, top, right, bottom, left, color=(255, 255, 255)):
74
+ """
75
  Image padding as part of TSR pre-processing to prevent missing table edges
76
+ """
77
  width, height = pil_img.size
78
  new_width = width + right + left
79
  new_height = height + top + bottom
 
81
  result.paste(pil_img, (left, top))
82
  return result
83
 
84
+
85
  def table_detector(image, THRESHOLD_PROBA):
86
+ """
87
  Table detection using DEtect-object TRansformer pre-trained on 1 million tables
88
+ """
89
 
90
  feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
91
  encoding = feature_extractor(image, return_tensors="pt")
92
 
93
+ model = TableTransformerForObjectDetection.from_pretrained(
94
+ "microsoft/table-transformer-detection"
95
+ )
96
 
97
  with torch.no_grad():
98
  outputs = model(**encoding)
 
102
 
103
  target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
104
  postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
105
+ bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
106
 
107
  return (model, probas[keep], bboxes_scaled)
108
 
109
 
110
  def table_struct_recog(image, THRESHOLD_PROBA):
111
+ """
112
  Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
113
+ """
114
 
115
  feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
116
  encoding = feature_extractor(image, return_tensors="pt")
117
 
118
+ model = TableTransformerForObjectDetection.from_pretrained(
119
+ "microsoft/table-transformer-structure-recognition"
120
+ )
121
  with torch.no_grad():
122
  outputs = model(**encoding)
123
 
 
126
 
127
  target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
128
  postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
129
+ bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
130
 
131
  return (model, probas[keep], bboxes_scaled)
132
 
133
+
134
+ def generate_structure(
135
+ model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom
136
+ ):
137
  colors = ["red", "blue", "green", "yellow", "orange", "violet"]
138
+ """
139
  Co-ordinates are adjusted here by 3 'pixels'
140
  To plot table pillow image and the TSR bounding boxes on the table
141
+ """
142
  # plt.figure(figsize=(32,20))
143
  # plt.imshow(pil_img)
144
  # ax = plt.gca()
 
147
  idx = 0
148
  for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
149
 
150
+ xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
151
  cl = p.argmax()
152
  class_text = model.config.id2label[cl.item()]
153
+ text = f"{class_text}: {p[cl]:0.2f}"
154
  # or (class_text == 'table column')
155
  # if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
156
+ # ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2))
157
+ # ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5))
158
+
159
+ if class_text == "table row":
160
+ rows["table row." + str(idx)] = (
161
+ xmin,
162
+ ymin - expand_rowcol_bbox_top,
163
+ xmax,
164
+ ymax + expand_rowcol_bbox_bottom,
165
+ )
166
+ if class_text == "table column":
167
+ cols["table column." + str(idx)] = (
168
+ xmin,
169
+ ymin - expand_rowcol_bbox_top,
170
+ xmax,
171
+ ymax + expand_rowcol_bbox_bottom,
172
+ )
173
 
174
  idx += 1
175
 
176
  # plt.axis('on')
177
  return rows, cols
178
 
179
+
180
+ def sort_table_featuresv2(rows: dict, cols: dict):
181
  # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
182
+ rows_ = {
183
+ table_feature: (xmin, ymin, xmax, ymax)
184
+ for table_feature, (xmin, ymin, xmax, ymax) in sorted(
185
+ rows.items(), key=lambda tup: tup[1][1]
186
+ )
187
+ }
188
+ cols_ = {
189
+ table_feature: (xmin, ymin, xmax, ymax)
190
+ for table_feature, (xmin, ymin, xmax, ymax) in sorted(
191
+ cols.items(), key=lambda tup: tup[1][0]
192
+ )
193
+ }
194
 
195
  return rows_, cols_
196
 
197
+
198
+ def individual_table_featuresv2(pil_img, rows: dict, cols: dict):
199
 
200
  for k, v in rows.items():
201
  xmin, ymin, xmax, ymax = v
 
209
 
210
  return rows, cols
211
 
212
+
213
+ def object_to_cellsv2(
214
+ master_row: dict,
215
+ cols: dict,
216
+ expand_rowcol_bbox_top,
217
+ expand_rowcol_bbox_bottom,
218
+ padd_left,
219
+ ):
220
+ """Removes redundant bbox for rows&columns and divides each row into cells from columns
221
  Args:
222
  Returns:
223
+
224
+ """
225
  cells_img = {}
226
  header_idx = 0
227
  row_idx = 0
 
249
  # new_master_row[k_row] = v_row
250
  ######################################################
251
  for k_row, v_row in new_master_row.items():
252
+
253
  _, _, _, _, row_img = v_row
254
  xmax, ymax = row_img.size
255
  xa, ya, xb, yb = 0, 0, 0, ymax
 
269
  xb = xmax_col
270
  if idx == 0:
271
  xa = 0
272
+ if idx == len(new_cols) - 1:
273
  xb = xmax
274
  xa, ya, xb, yb = xa, ya, xb, yb
275
 
276
  row_img_cropped = row_img.crop((xa, ya, xb, yb))
277
  row_img_list.append(row_img_cropped)
278
 
279
+ cells_img[k_row + "." + str(row_idx)] = row_img_list
280
  row_idx += 1
281
 
282
+ return cells_img, len(new_cols), len(new_master_row) - 1
283
+
284
 
285
  def pytess(cell_pil_img):
286
+ return " ".join(
287
+ pytesseract.image_to_data(
288
+ cell_pil_img,
289
+ output_type=Output.DICT,
290
+ config="-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces",
291
+ )["text"]
292
+ ).strip()
293
 
294
+
295
+ def uniquify(seq, suffs=count(1)):
296
  """Make all the items unique by adding a suffix (1, 2, etc).
297
  Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
298
  `seq` is mutable sequence of strings.
299
  `suffs` is an optional alternative suffix iterable.
300
  """
301
+ not_unique = [k for k, v in Counter(seq).items() if v > 1]
302
 
303
+ suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
304
+ for idx, s in enumerate(seq):
305
  try:
306
  suffix = str(next(suff_gens[s]))
307
  except KeyError:
 
311
 
312
  return seq
313
 
314
+
315
  def clean_dataframe(df):
316
+ """
317
  Remove irrelevant symbols that appear with tesseractOCR
318
+ """
319
  # df.columns = [col.replace('|', '') for col in df.columns]
320
 
321
  for col in df.columns:
322
 
323
+ df[col] = df[col].str.replace("'", "", regex=True)
324
+ df[col] = df[col].str.replace('"', "", regex=True)
325
+ df[col] = df[col].str.replace("]", "", regex=True)
326
+ df[col] = df[col].str.replace("[", "", regex=True)
327
+ df[col] = df[col].str.replace("{", "", regex=True)
328
+ df[col] = df[col].str.replace("}", "", regex=True)
329
+ df[col] = df[col].str.replace("|", "", regex=True)
330
  return df
331
 
332
+
333
+ def create_dataframe(cells_pytess_result: list, max_cols: int, max_rows: int, csv_path):
334
+ """Create dataframe using list of cell values of the table, also checks for valid header of dataframe
335
  Args:
336
  cells_pytess_result: list of strings, each element representing a cell in a table
337
  max_cols, max_rows: number of columns and rows
338
  Returns:
339
+ dataframe : final dataframe after all pre-processing
340
+ """
341
 
342
  headers = cells_pytess_result[:max_cols]
343
+ new_headers = uniquify(headers, (f" {x!s}" for x in string.ascii_lowercase))
344
  counter = 0
345
 
346
  cells_list = cells_pytess_result[max_cols:]
 
352
  df.iat[nrows, ncols] = str(cells_list[cell_idx])
353
  cell_idx += 1
354
 
355
+ ## To check if there are duplicate headers if result of uniquify+col == col
356
  ## This check removes headers when all headers are empty or if median of header word count is less than 6
357
  for x, col in zip(string.ascii_lowercase, new_headers):
358
+ if f" {x!s}" == col:
359
  counter += 1
360
  header_char_count = [len(col) for col in new_headers]
361
 
 
369
 
370
  return df
371
 
372
+
373
+ def process_image(
374
+ image,
375
+ td_threshold,
376
+ tsr_threshold,
377
+ padd_top,
378
+ padd_left,
379
+ padd_bottom,
380
+ padd_right,
381
+ delta_xmin,
382
+ delta_ymin,
383
+ delta_xmax,
384
+ delta_ymax,
385
+ expand_rowcol_bbox_top,
386
+ expand_rowcol_bbox_bottom,
387
+ ):
388
+ image = image.convert("RGB")
389
+ model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=td_threshold)
390
+ # plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
391
+ cropped_img_list = crop_tables(
392
+ image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
393
+ )
394
+
395
+ result = []
396
+ for idx, unpadded_table in enumerate(cropped_img_list):
397
+ table = add_padding(
398
+ unpadded_table, padd_top, padd_right, padd_bottom, padd_left
399
+ )
400
+ model, probas, bboxes_scaled = table_struct_recog(
401
+ table, THRESHOLD_PROBA=tsr_threshold
402
+ )
403
+ rows, cols = generate_structure(
404
+ model,
405
+ table,
406
+ probas,
407
+ bboxes_scaled,
408
+ expand_rowcol_bbox_top,
409
+ expand_rowcol_bbox_bottom,
410
+ )
411
+ rows, cols = sort_table_featuresv2(rows, cols)
412
+ master_row, cols = individual_table_featuresv2(table, rows, cols)
413
+ cells_img, max_cols, max_rows = object_to_cellsv2(
414
+ master_row,
415
+ cols,
416
+ expand_rowcol_bbox_top,
417
+ expand_rowcol_bbox_bottom,
418
+ padd_left,
419
+ )
420
+ sequential_cell_img_list = []
421
+ for k, img_list in cells_img.items():
422
+ for img in img_list:
423
+ sequential_cell_img_list.append(pytess(img))
424
+
425
+ csv_path = "/content/sample_data/table_" + str(idx)
426
+ df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path)
427
+ result.append(df)
428
+ res = result[0].to_json()
429
+ return res
430
 
431
 
432
  title = "Interactive demo OCR: microsoft - table-transformer-detection + tesseract"
433
  description = "Demo for microsoft - table-transformer-detection + tesseract"
434
  article = "<p style='text-align: center'></p>"
435
+ examples = [["image_0.png"]]
436
+
437
+ iface = gr.Interface(
438
+ fn=process_image,
439
+ inputs=[
440
+ gr.Image(type="pil"),
441
+ gr.Slider(0, 1, 0.9),
442
+ gr.Slider(0, 1, 0.8),
443
+ gr.Slider(0, 200, 100),
444
+ gr.Slider(0, 200, 100),
445
+ gr.Slider(0, 200, 100),
446
+ gr.Slider(0, 200, 100),
447
+ gr.Number(0),
448
+ gr.Number(0),
449
+ gr.Number(0),
450
+ gr.Number(0),
451
+ gr.Number(0),
452
+ gr.Number(0),
453
+ ],
454
+ outputs="text",
455
+ title=title,
456
+ description=description,
457
+ article=article,
458
+ examples=examples,
459
+ )
460
  iface.launch(debug=True)
461
+