File size: 7,162 Bytes
06e8171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
import os
# import openai
from io import StringIO
from langchain.chat_models import ChatOpenAI
from langchain import OpenAI, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferWindowMemory

from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.document_loaders import PyPDFLoader
# from langchain.chains import ConversationalRetrievalChain
from langchain.chains.summarize import load_summarize_chain
import tempfile
if "file_uploader_key" not in st.session_state:
    st.session_state["file_uploader_key"] = 0

if "uploaded_files" not in st.session_state:
    st.session_state["uploaded_files"] = []

# Prompt Template
template = """You are a chatbot having a conversation with a human.

Given the following extracted parts of a long document and a question, create a final answer.

{context}

{chat_history}
Human: {human_input}
Chatbot:"""

# Init Prompt
prompt = PromptTemplate(
    input_variables=["chat_history", "human_input", "context"], template=template
)

a = st.container()
with a:
    st.title("CHATBOT")
    global openai_api_key
    openai_api_key = st.text_input('OpenAI API Key', type='password')
if openai_api_key:
    @st.cache_resource
    def llm():
        model = OpenAI(temperature=0.0, openai_api_key=openai_api_key)
        embedding=OpenAIEmbeddings(openai_api_key=openai_api_key)
        return model, embedding

    llm,embedding = llm()

    @st.cache_resource
    def chain():
        global memory
        memory = ConversationBufferWindowMemory(memory_key="chat_history", input_key="human_input", return_messages=True, k=3)
        chain = LLMChain(
            llm=llm, prompt=prompt, memory=memory
        )
        
        return chain

    global llm_chain
    llm_chain = chain()


    summarize_template = """Write a concise summary of the given documents:
    {text}"""
    summarize_PROMPT = PromptTemplate(template=summarize_template, input_variables=["text"])
    llm_summarize = load_summarize_chain(llm=llm, chain_type="map_reduce",  map_prompt=summarize_PROMPT)
    # chain({"input_documents": docs}, return_only_outputs=True)
    # llm_summarize = load_summarize_chain(llm, chain_type="map_reduce")


    ########################################
    ####### CHATBOT interface#############
    ########################################
    # Initialize chat history
    if "messages" not in st.session_state:
        st.session_state.messages = []
    # Display chat messages from history on app rerun
    with a:
        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])

    global documents
    documents = []



    with st.sidebar:
        uploaded_files = st.file_uploader("Upload file", accept_multiple_files=True, 
                                        key=st.session_state["file_uploader_key"],
                                        type=['txt', 'pdf']
                                        #   on_change = check
                                        )

    if uploaded_files:
            # files = set([file.name for file in uploaded_files])
            st.session_state["uploaded_files"] = uploaded_files
            text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000 , chunk_overlap=10, separators=[" ", ",", "\n"])
            for file in uploaded_files:
                if file.name.endswith(".pdf"):
                                    # Save the uploaded file to a temporary location
                    temp_file_path = os.path.join('docs', file.name)
                    with open(temp_file_path, "wb") as temp_file:
                        temp_file.write(file.read())
                    loader = PyPDFLoader(temp_file_path)
                    # loader = loader.load()
                elif file.name.endswith('.txt'):
                    # To read file as bytes:
                    bytes_data = file.getvalue()
                    # To convert to a string based IO:
                    stringio = StringIO(file.getvalue().decode("utf-8"))
                    # To read file as string:
                    loader = stringio.read()
                    filename = os.path.join("docs",'text.txt')
                    # filename = 'docs/text.txt'
                    with open(filename,"wb") as f:
                            f.write(file.getbuffer())
                    loader = TextLoader(filename, autodetect_encoding=True)
                loader = loader.load()
                documents.extend(loader)
            documents = text_splitter.split_documents(documents)

            # Embedding
            global docsearch
            docsearch = Chroma.from_documents(documents,
                                            embedding=embedding)

    ########################################
    ########## SIDEBAR ###############
    ########################################

    # create a function that sets the value in state back to an empty list
    def clear_msg():
        st.session_state.messages = []
        llm_chain = chain()
        st.session_state["file_uploader_key"] += 1
        st.experimental_rerun()

    if uploaded_files:
        if st.sidebar.button('Summarize'):
            with a:
                query = 'Summarize uploaded documents'
                st.chat_message("user").markdown(query)
                llm_chain.memory.chat_memory.add_user_message(query)
                # Add user message to chat history
                st.session_state.messages.append({"role": "user", "content": query})
                response = llm_summarize.run(documents)
                # chain({"input_documents": docs}, return_only_outputs=True)

                with st.chat_message("assistant"):
                    st.markdown(response)
                llm_chain.memory.chat_memory.add_ai_message(response)
                # Add assistant response to chat history
                st.session_state.messages.append({"role": "assistant", "content": response})


    st.sidebar.button("Clear", on_click=clear_msg)

    ########################################
    ####### React to user input#############
    ########################################

    with a:
        if query := st.chat_input():
            # Display user message in chat message container
            st.chat_message("user").markdown(query)
            # Add user message to chat history
            st.session_state.messages.append({"role": "user", "content": query})
            if documents:
                docs = docsearch.similarity_search(query)
            else:
                docs = 'No Context provide'
            response = llm_chain.run({"context": docs, "human_input": query})
            # Display assistant response in chat message container
            with st.chat_message("assistant"):
                st.markdown(response)
            # Add assistant response to chat history
            st.session_state.messages.append({"role": "assistant", "content": response})