|
import gradio as gr |
|
import numpy as np |
|
import cv2 |
|
import os |
|
from imutils import resize |
|
import pickle |
|
from sklearn.preprocessing import LabelEncoder |
|
from sklearn.svm import SVC |
|
|
|
|
|
def calc_embeddings(all_files, names): |
|
detector = cv2.dnn.readNetFromCaffe( |
|
"../deploy.prototxt.txt", "../res10_300x300_ssd_iter_140000.caffemodel" |
|
) |
|
embedder = cv2.dnn.readNetFromTorch("../openface.nn4.small2.v1.t7") |
|
knownNames = [] |
|
knownEmbeddings = [] |
|
total = 0 |
|
for file in all_files: |
|
name = names[total] |
|
path = os.path.join(os.getcwd(), name, file) |
|
|
|
f = open(path, "rb") |
|
file_bytes = np.asarray(bytearray(f.read()), dtype=np.uint8) |
|
image = cv2.imdecode(file_bytes, 1) |
|
image = resize(image, width=600) |
|
(h, w) = image.shape[:2] |
|
|
|
imageBlob = cv2.dnn.blobFromImage( |
|
cv2.resize(image, (300, 300)), |
|
1.0, |
|
(300, 300), |
|
(104.0, 177.0, 123.0), |
|
swapRB=False, |
|
crop=False, |
|
) |
|
detector.setInput(imageBlob) |
|
detections = detector.forward() |
|
|
|
if len(detections) > 0: |
|
i = np.argmax(detections[0, 0, :, 2]) |
|
confidence = detections[0, 0, i, 2] |
|
|
|
if confidence > 0.5: |
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
(startX, startY, endX, endY) = box.astype("int") |
|
face = image[startY:endY, startX:endX] |
|
(fH, fW) = face.shape[:2] |
|
if fW < 20 or fH < 20: |
|
continue |
|
|
|
faceBlob = cv2.dnn.blobFromImage( |
|
face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False |
|
) |
|
embedder.setInput(faceBlob) |
|
vec = embedder.forward() |
|
knownNames.append(name) |
|
knownEmbeddings.append(vec.flatten()) |
|
total += 1 |
|
with open("../unknownEmbeddings.pkl", "rb") as fp: |
|
l = pickle.load(fp) |
|
with open("../unknownNames.pkl", "rb") as fp: |
|
n = pickle.load(fp) |
|
for i in l: |
|
knownEmbeddings.append(i) |
|
knownNames = knownNames + n |
|
return knownEmbeddings, knownNames |
|
|
|
|
|
def recognize(embeddings, names): |
|
|
|
le = LabelEncoder() |
|
labels = le.fit_transform(names) |
|
recognizer = SVC(C=1.0, kernel="linear", probability=True) |
|
recognizer.fit(embeddings, names) |
|
|
|
return le, recognizer |
|
|
|
|
|
def run_inference(myImage): |
|
|
|
os.chdir("celeb_dataset") |
|
celebs = [] |
|
scores = dict() |
|
|
|
for celeb in os.listdir(): |
|
files = [] |
|
names = [] |
|
if celeb in celebs: |
|
continue |
|
name = celeb |
|
celebs.append(name) |
|
for file in os.listdir(celeb): |
|
files.append(file) |
|
names.append(name) |
|
embeddings, names = calc_embeddings(files, names) |
|
le, model = recognize(embeddings, names) |
|
detector = cv2.dnn.readNetFromCaffe( |
|
"../deploy.prototxt.txt", |
|
"../res10_300x300_ssd_iter_140000.caffemodel", |
|
) |
|
embedder = cv2.dnn.readNetFromTorch("../openface.nn4.small2.v1.t7") |
|
(h, w) = myImage.shape[:2] |
|
imageBlob = cv2.dnn.blobFromImage( |
|
cv2.resize(myImage, (300, 300)), |
|
1.0, |
|
(300, 300), |
|
(104.0, 177.0, 123.0), |
|
swapRB=False, |
|
crop=False, |
|
) |
|
detector.setInput(imageBlob) |
|
detections = detector.forward() |
|
for i in range(0, detections.shape[2]): |
|
confidence = detections[0, 0, i, 2] |
|
if confidence > 0.5: |
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
(startX, startY, endX, endY) = box.astype("int") |
|
face = myImage[startY:endY, startX:endX] |
|
(fH, fW) = face.shape[:2] |
|
if fW < 20 or fH < 20: |
|
continue |
|
|
|
faceBlob = cv2.dnn.blobFromImage( |
|
face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False |
|
) |
|
embedder.setInput(faceBlob) |
|
vec = embedder.forward() |
|
preds = model.predict_proba(vec)[0] |
|
j = np.argmax(preds) |
|
proba = preds[j] |
|
name = le.classes_[j] |
|
|
|
scores[name] = proba * 100 |
|
result = sorted(scores.items(), key=lambda x: x[1], reverse=True) |
|
return result |
|
|
|
|
|
iface = gr.Interface( |
|
fn=run_inference, |
|
inputs="image", |
|
outputs="label", |
|
live=True, |
|
interpretation="default", |
|
title="Who do you look Like?!", |
|
) |
|
iface.launch() |
|
|