opensearchspace / app.py
suzhoum's picture
wip
d59a442
raw
history blame
990 Bytes
import gradio as gr
from autogluon.multimodal import MultiModalPredictor
def text_embedding(query: str):
model_name = "sentence-transformers/all-MiniLM-L6-v2"
predictor = MultiModalPredictor(
pipeline="feature_extraction",
hyperparameters={
"model.hf_text.checkpoint_name": model_name
}
)
query_embedding = predictor.extract_embedding([query])
return query_embedding["0"]
def main():
with gr.Blocks(title="OpenSearch Demo") as demo:
gr.Markdown("# Text Embedding for Search Queries")
gr.Markdown("Ask an open question!")
with gr.Row():
inp = gr.Textbox(show_label=False)
with gr.Row():
btn = gr.Button("Generate Embedding")
with gr.Row():
out = gr.DataFrame(label="Embedding", show_label=True)
btn.click(fn=text_embedding, inputs=inp, outputs=out)
demo.launch()
if __name__ == "__main__":
main()