File size: 13,299 Bytes
02fde7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422e946
 
 
9ad5350
a23e88d
02fde7e
f81df75
 
02fde7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9f8d41
02fde7e
 
422e946
b7d851e
3484514
81740ff
b8bf7c3
81740ff
 
b8bf7c3
81740ff
 
a23e88d
 
422e946
02fde7e
 
 
 
 
 
 
 
 
d0d47f8
02fde7e
422e946
 
02fde7e
 
 
 
 
 
 
 
 
 
 
 
 
0b41e7e
f07bac5
0b41e7e
 
009c9e0
 
 
0b41e7e
 
 
37ee0fe
0b41e7e
37ee0fe
 
0b41e7e
37ee0fe
0b41e7e
37ee0fe
 
 
 
aa85c6a
37ee0fe
 
0b41e7e
37ee0fe
 
 
 
 
279e629
37ee0fe
781f224
37ee0fe
279e629
 
 
 
 
 
 
 
37ee0fe
 
 
 
 
 
 
 
 
 
 
81740ff
b8bf7c3
 
81740ff
37ee0fe
 
 
23b4a0b
e0b17bb
 
23b4a0b
422e946
37ee0fe
e25b5dd
81740ff
 
 
 
 
 
 
e25b5dd
81740ff
37ee0fe
 
 
 
4843304
37ee0fe
 
 
 
e25b5dd
422e946
 
37ee0fe
422e946
37ee0fe
 
e25b5dd
422e946
 
 
cfb39ec
37ee0fe
 
422e946
 
e25b5dd
422e946
 
 
 
 
 
e25b5dd
796bd91
 
 
422e946
 
 
e25b5dd
 
37ee0fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59248ff
37ee0fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b705ef3
b6570bd
 
 
 
 
81740ff
37ee0fe
 
 
 
 
 
e25b5dd
796bd91
37ee0fe
 
 
81740ff
37ee0fe
 
 
 
422e946
838a5f0
02fde7e
422e946
e25b5dd
 
ac839ac
37ee0fe
 
 
 
 
 
 
 
 
 
 
 
ac839ac
37ee0fe
aa85c6a
f81df75
37ee0fe
 
5832d50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import re
import dateutil.parser
import numpy as np
from difflib import SequenceMatcher
import sacrebleu

import time


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class LogMetric(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    # Constant regex to get timestrings
    timestamp_regex = r'^\s*\[?\s*(\d{4}[-/.]\d{2}[-/.]\d{2}(?:[ T]\d{2}[:]\d{2}(?:[:]\d{2}(?:[.,]\d+)?)?(?:Z|[+-]\d{2}[:]\d{2})?)?)\s*\]?\s*'
    timestamp_pattern = re.compile(timestamp_regex, re.MULTILINE)

    int_regex = r'(-?\d+)'
    int_pattern = re.compile(int_regex)

    float_regex = r'(-?\d+\.\d+)'
    float_pattern = re.compile(float_regex)

    sacrebleu_metric = evaluate.load("evaluate-metric/sacrebleu")


    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            # Both prediction and reference are strings
            features=datasets.Features({
                "predictions": datasets.Value("string", id="sequence"),
                "references": datasets.Value("string", id="sequence"),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    # Jaccard Similarity to measure closeness of two log-messages
    def get_jaccard_similarity(self, set1, set2):
        intersection = set1.intersection(set2)
        union = set1.union(set2)
        if (len(union) == 0):
            return 1.0

        return len(intersection) / len(union)
    
    # A score depending on the difference in length of two sentences
    def get_length_score(self, preds_split, refs_split):

        pred_content_lengths = np.vectorize(len)(preds_split)
        ref_content_lengths = np.vectorize(len)(refs_split)

        return self.smapeScore(pred_content_lengths, ref_content_lengths)

    # helper function that computes the smape_score either between two numbers or two lists of numbers (must be the same length)
    def smapeScore(self, P, R):
        P_isnumber = isinstance(P, (int, float))
        R_isnumber = isinstance(R, (int, float))

        # either both must be numbers or both must be no number
        assert P_isnumber == R_isnumber

        if not P_isnumber:
            assert(len(P) == len(R))

        if P_isnumber and R_isnumber:
            if P == 0 and R == 0: return 1.0      # since this leads to (|R| + |P|) = 0
            return 1 - (np.sum(np.abs(R - P) / (np.abs(R) + np.abs(P))))    # (n = 1)
        else:
            if len(P) == 0 and len(R) == 0: return 1.0     # since this leads to n = 0
            n = len(P)
            P = np.array(P)
            R = np.array(R)
            denominator = np.abs(R) + np.abs(P)
            # Replace zeros in the denominator with 1 to avoid division by zero.
            # the denominator[i] = 0 is only possible if R[i] == P[i] == 0, hence we can set denominator[i] = 1 and still achieve the result of 0 after division at index i
            denominator[denominator == 0] = 1

            return 1 - (1.0/n * np.sum(np.abs(R - P) / denominator))

    # splits both strings at \n and then computes the smape_score of their lengths
    def getLineCountScore(self, pred, ref):
        pred_lines_amt = len(pred.splitlines())
        ref_lines_amt = len(ref.splitlines())

        # print("#pred_lines:", pred_lines_amt)
        # print("#ref_lines:", ref_lines_amt)

        return self.smapeScore(pred_lines_amt, ref_lines_amt)
    
    def replaceNumbers(self, text:str):
        text = self.int_pattern.sub(r'<|INT|>', text)
        text = self.float_pattern.sub(r'<|FLOAT|>', text)
        return text
    
    # Get differenct scores regarding the content of a log-message
    def getLineContentScore(self, pred_logMessages, ref_logMessages):
        if pred_logMessages == [] and ref_logMessages == []:
            pred_logMessages = [""]
            ref_logMessages = [""]
        sacrebleu_score = self.sacrebleu_metric.compute(predictions=pred_logMessages, references=ref_logMessages)["score"] / 100.0
        
        smape_length_score = self.get_length_score(pred_logMessages, ref_logMessages)

        vectorized_replaceNumbers = np.vectorize(self.replaceNumbers)

        cleaned_pred_logMessages = vectorized_replaceNumbers(pred_logMessages)
        cleaned_ref_logMessages = vectorized_replaceNumbers(ref_logMessages)

        sacrebleu_withoutExplicitNumbers_score = self.sacrebleu_metric.compute(predictions=cleaned_pred_logMessages, references=cleaned_ref_logMessages)["score"] / 100.0


        return sacrebleu_score, sacrebleu_withoutExplicitNumbers_score, smape_length_score
    
    # get different scores regarding the timestamp
    def getTimestampsScore(self, pred_timestamps, ref_timestamps):
        timestamp_amt_score = self.smapeScore(len(pred_timestamps), len(ref_timestamps))
        
        # if there are no predicted timestamps, return early. It is still consistent and monotonic.
        if (len(pred_timestamps) == 0):
            return timestamp_amt_score, 1.0, 1.0


        # replace all digits in the reference timestamp (first timestamp) with '/d' to get
        # a regex that describes the format  
        pred_timestring_pattern = re.sub(r'\d', r'\\d', re.escape(pred_timestamps[0]))
        
        matchesPatternScore = 1.0
        monotonicallyIncreasingScore = 1.0
        
        # A variable to save the previous timestamp (as datetime obj) to check monotonicity
        prev_datetime = None
        # Convert matches to datetime objects

        for i in range(len(pred_timestamps)):
            ts = pred_timestamps[i]
            try:
                # Check if the format matches with the format of the first timestamp
                # TODO!! Check this later, maybe it is too restricting for training a llm
                matchesPattern = re.fullmatch(pred_timestring_pattern, ts) is not None
                # Check if the timestamps are monotonically increasing
                cur_datetime = dateutil.parser.parse(ts)
                monotonicallyIncreasing = True if prev_datetime == None else prev_datetime <= cur_datetime
                prev_datetime = cur_datetime

                # If one entry doesn't fulfill the matching pattern property or the monotinicity property, set to 0 for whole log
                matchesPatternScore = 0.0 if (not matchesPattern) else matchesPatternScore
                monotonicallyIncreasingScore = 0.0 if (not monotonicallyIncreasing) else monotonicallyIncreasingScore
                

            except Exception as e:
                # e.g. date format not parsable by dateutil.parser
                matchesPatternScore = 0.0
                monotonicallyIncreasingScore = 0.0
        
        # matchesPatternScore and monotonicallyIncreasingScore are in {0,1}
        return timestamp_amt_score, matchesPatternScore, monotonicallyIncreasingScore



    def getLogMetric(self, pred : str, ref : str):
        ref = ref.strip(' \t\n\r')
        pred = pred.strip(' \t\n\r')

        linecount_difference_SMAPE = self.getLineCountScore(pred, ref)

        
        # Split log on timestamps
        pred_split_log = self.timestamp_pattern.split(pred)
        ref_split_log = self.timestamp_pattern.split(ref)

        # One logentry always consists of timestamp + log-message
        # pred_logentries = []
        # ref_logentries = []

        pred_timestamps = []
        pred_logMessages = []

        ref_timestamps = []
        ref_logMessages = []
        # reorganize log into logentry-tuples, consisting of timestamp + log-message
        for i in range(1, len(pred_split_log), 2):
            # pred_logentries.append((pred_split_log[i],pred_split_log[i+1]))
            pred_timestamps.append(pred_split_log[i])
            pred_logMessages.append(pred_split_log[i+1])

        
        for i in range(1, len(ref_split_log), 2):
            # ref_logentries.append((ref_split_log[i],ref_split_log[i+1]))
            ref_timestamps.append(ref_split_log[i])
            ref_logMessages.append(ref_split_log[i+1])

        # We extend the shorter list to the length of the longer one
        max_logentries = max(len(pred_logMessages), len(ref_logMessages))

        pred_logMessages += (max_logentries - len(pred_logMessages)) * [" "]
        ref_logMessages += (max_logentries- len(ref_logMessages)) * [" "]

        linecontent_sacrebleu, linecontent_sacrebleu_withoutExplicitNumbers, linecontentlength_difference_SMAPE = self.getLineContentScore(pred_logMessages, ref_logMessages)
        
        timestamps_difference_SMAPE, timestamps_formatConsistency_absolute, timestamps_monotinicity_absolute = self.getTimestampsScore(pred_timestamps, ref_timestamps)

        #TODO:
        # linecontentordering_permutations = getLineContentOrderingScore(pred_logMessages, ref_logMessages)
        

        # return weighted overall score of all the different scores
        return {"linecount_difference_SMAPE_score": linecount_difference_SMAPE,
                "linecontentlength_difference_SMAPE_score": linecontentlength_difference_SMAPE,
                "linecontent_sacrebleu_score": linecontent_sacrebleu,
                "linecontent_sacrebleu_withoutExplicitNumbers_score": linecontent_sacrebleu_withoutExplicitNumbers,
                "timestamps_SMAPE_difference_score": timestamps_difference_SMAPE,
                "timestamps_formatConsistency_score": timestamps_formatConsistency_absolute,
                "timestamps_monotinicity_score": timestamps_monotinicity_absolute
                }

    def _compute(self, predictions, references):
        """Returns the scores"""

        # TODO: get separate log entries (split before timestamps), replace timestamps with token and compare the log entry with BLEU

        t_before_logmetric = time.perf_counter()
        metric_dicts = [self.getLogMetric(p,r) for p,r in zip(predictions,references)]
        # Extract keys (assuming all dictionaries have the same keys)
        keys = metric_dicts[0].keys()
        
        # Convert list of dictionaries into a 2D numpy array
        values = np.array([list(d.values()) for d in metric_dicts])
        
        # Calculate the mean along the vertical axis (axis=0)
        mean_values = np.mean(values, axis=0)
        
        # a dictionary, matching the keys with their corresponding mean values
        metric_result = dict(zip(keys, mean_values))

        t_after_logmetric = time.perf_counter()
        logmetric_duration = f"{t_after_logmetric - t_before_logmetric:0.10f}"


        return metric_result