logmetric / logmetric.py
svenwey's picture
no changes, to test if app works still if hf space is in private mode
5832d50
raw
history blame
6.09 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import re
import dateutil.parser
import numpy as np
import time
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class LogMetric(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
# Constant regex to get timestrings
timestamp_regex = r'(^\d{4}[-/.]\d{2}[-/.]\d{2}(?:[ T]\d{2}[:]\d{2}(?:[:]\d{2}(?:[.,]\d+)?)?(?:Z|[+-]\d{2}[:]\d{2})?)?)'
timestamp_pattern = re.compile(timestamp_regex, re.MULTILINE)
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
# Both prediction and reference are strings
features=datasets.Features({
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def getLogMetric(self, pred : str, ref : str):
ref = ref.strip(' \t\n\r')
pred = pred.strip(' \t\n\r')
# Find all timestrings in the log
pred_timestrings = self.timestamp_pattern.findall(pred)
ref_timestrings = self.timestamp_pattern.findall(ref)
#Check if there is the correct amount of timestrings in the prediction
if(len(pred_timestrings) != len(ref_timestrings)):
return 0.0
# If there are no timestrings, we must not check anything, we can directly return 1.0
if (len(pred_timestrings) == 0):
return 1.0
# replace all digits in the reference timestamp (first timestamp) with '/d' to get
# a regex that describes the format
pred_timestring_pattern = re.sub(r'\d', r'\\d', re.escape(pred_timestrings[0]))
# A variable to save the previous timestamp (as datetime obj) to check monotonicity
prev_datetime = None
# Convert matches to datetime objects
for ts in pred_timestrings:
try:
# Check if the format matches with the format of the first timestamp
matchesPattern = re.fullmatch(pred_timestring_pattern, ts) is not None
# Check if the timestamps are monotonically increasing
cur_datetime = dateutil.parser.parse(ts)
monotonicallyIncreasing = True if prev_datetime == None else prev_datetime <= cur_datetime
prev_datetime = cur_datetime
if not (matchesPattern and monotonicallyIncreasing):
# timestamps not consistent
return 0.0
except Exception as e:
# e.g. date format not parsable by dateutil.parser
return 0.0
# Correct amt of timestrings, monotonically increasing, consistent + (by dateutil.parser) parsable format
return 1.0
def _compute(self, predictions, references):
"""Returns the scores"""
t_before_logmetric = time.perf_counter()
timestamp_score = np.mean([self.getLogMetric(p,r) for p,r in zip(predictions,references)])
t_after_logmetric = time.perf_counter()
logmetric_duration = f" {t_after_logmetric - t_before_logmetric:0.10f}"
return {
"score": timestamp_score,
"duration": logmetric_duration,
}