svenwey commited on
Commit
a73a1f6
1 Parent(s): a6ef9e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: LogScoreMetric
3
  datasets:
4
  - None
5
  tags:
@@ -12,7 +12,7 @@ app_file: app.py
12
  pinned: false
13
  ---
14
 
15
- # Metric Card for LogScoreMetric
16
 
17
  ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
18
 
@@ -31,7 +31,7 @@ Example with timestamps that are of correct amount, consistent, monotonically in
31
  ```
32
  >>> predictions = ["2024-01-12 11:23 hello, nice to meet you \n 2024-01-12 11:24 So we see each other again"]
33
  >>> references = ["2024-02-14 This is a hello to you \n 2024-02-15 Another hello"]
34
- logmetric = evaluate.load("svenwey/logscoremetric")
35
  >>> results = logmetric.compute(predictions=predictions,
36
  ... references=references)
37
  >>> print(results["timestamp_score"])
@@ -42,7 +42,7 @@ Example with timestamp missing from prediction:
42
  ```
43
  >>> predictions = ["hello, nice to meet you"]
44
  >>> references = ["2024-02-14 This is a hello to you"]
45
- logmetric = evaluate.load("svenwey/logscoremetric")
46
  >>> results = logmetric.compute(predictions=predictions,
47
  ... references=references)
48
  >>> print(results["timestamp_score"])
 
1
  ---
2
+ title: LogMetric
3
  datasets:
4
  - None
5
  tags:
 
12
  pinned: false
13
  ---
14
 
15
+ # Metric Card for LogMetric
16
 
17
  ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
18
 
 
31
  ```
32
  >>> predictions = ["2024-01-12 11:23 hello, nice to meet you \n 2024-01-12 11:24 So we see each other again"]
33
  >>> references = ["2024-02-14 This is a hello to you \n 2024-02-15 Another hello"]
34
+ logmetric = evaluate.load("svenwey/logmetric")
35
  >>> results = logmetric.compute(predictions=predictions,
36
  ... references=references)
37
  >>> print(results["timestamp_score"])
 
42
  ```
43
  >>> predictions = ["hello, nice to meet you"]
44
  >>> references = ["2024-02-14 This is a hello to you"]
45
+ logmetric = evaluate.load("svenwey/logmetric")
46
  >>> results = logmetric.compute(predictions=predictions,
47
  ... references=references)
48
  >>> print(results["timestamp_score"])