svjack commited on
Commit
1fec9bd
·
verified ·
1 Parent(s): 9a7f5c2

Upload 2 files

Browse files
Files changed (2) hide show
  1. noinstance_copy_script.py +63 -0
  2. noinstance_v2i.py +110 -0
noinstance_copy_script.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+
3
+ '''
4
+
5
+ import os
6
+ import cv2
7
+ import argparse
8
+ import shutil
9
+ from pathlib import Path
10
+ from tqdm import tqdm
11
+
12
+ from animeinsseg import AnimeInsSeg
13
+
14
+ # 设置模型路径
15
+ ckpt = r'models/AnimeInstanceSegmentation/rtmdetl_e60.ckpt'
16
+ mask_thres = 0.3
17
+ instance_thres = 0.3
18
+ refine_kwargs = {'refine_method': 'refinenet_isnet'} # 如果不使用 refinenet,设置为 None
19
+ # refine_kwargs = None
20
+
21
+ # 初始化模型
22
+ net = AnimeInsSeg(ckpt, mask_thr=mask_thres, refine_kwargs=refine_kwargs)
23
+
24
+ def has_instances(image_path):
25
+ # 读取图像
26
+ img = cv2.imread(image_path)
27
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
28
+
29
+ # 推理
30
+ instances = net.infer(
31
+ img,
32
+ output_type='numpy',
33
+ pred_score_thr=instance_thres
34
+ )
35
+
36
+ # 如果没有检测到对象,返回 False
37
+ if instances.bboxes is None:
38
+ return False
39
+ return True
40
+
41
+ def copy_images_without_instances(input_path, output_dir):
42
+ input_path = Path(input_path)
43
+ output_dir = Path(output_dir)
44
+
45
+ if not output_dir.exists():
46
+ output_dir.mkdir(parents=True)
47
+
48
+ image_paths = list(input_path.rglob("*.png")) + list(input_path.rglob("*.jpg"))
49
+ for image_path in tqdm(image_paths, desc="Processing images"):
50
+ if not has_instances(image_path):
51
+ # 拷贝不包含实例的图片到目标文件夹
52
+ shutil.copy(image_path, output_dir / image_path.name)
53
+
54
+ def main():
55
+ parser = argparse.ArgumentParser(description="Copy images without instances to a target directory")
56
+ parser.add_argument("input_path", type=str, help="Path to the input image or folder")
57
+ parser.add_argument("output_dir", type=str, help="Path to the output directory")
58
+ args = parser.parse_args()
59
+
60
+ copy_images_without_instances(args.input_path, args.output_dir)
61
+
62
+ if __name__ == "__main__":
63
+ main()
noinstance_v2i.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #### pip install imagehash
2
+ #### python noinstance_v2i.py 翠星测试.mp4 翠星图片
3
+ #### python noinstance_v2i.py 翠星测试.mp4 翠星图片25_0_1
4
+
5
+ import os
6
+ import cv2
7
+ import argparse
8
+ import shutil
9
+ import imagehash
10
+ from pathlib import Path
11
+ from tqdm import tqdm
12
+ from moviepy.editor import VideoFileClip
13
+ from collections import deque
14
+ from PIL import Image
15
+
16
+ from animeinsseg import AnimeInsSeg
17
+
18
+ # 配置参数
19
+ CKPT_PATH = "models/AnimeInstanceSegmentation/rtmdetl_e60.ckpt"
20
+ DOWNSAMPLE_SIZE = (320, 180) # 下采样尺寸提升处理速度
21
+ MIN_SCENE_CHANGE = 0.3 # 场景变化阈值 (0-1)
22
+ HASH_THRESHOLD = 25 # 哈希相似度阈值
23
+ FRAME_BUFFER = 10 # 连续帧缓冲区
24
+
25
+ class VideoProcessor:
26
+ def __init__(self):
27
+ self.net = AnimeInsSeg(
28
+ CKPT_PATH,
29
+ mask_thr=0.1,
30
+ refine_kwargs={'refine_method': 'refinenet_isnet'}
31
+ )
32
+ self.hash_dict = {}
33
+ self.last_saved_hash = None
34
+
35
+ def _preprocess_frame(self, frame):
36
+ """预处理帧:下采样 + 灰度化"""
37
+ small_frame = cv2.resize(frame, DOWNSAMPLE_SIZE)
38
+ return cv2.cvtColor(small_frame, cv2.COLOR_BGR2GRAY)
39
+
40
+ def _has_human(self, frame):
41
+ """快速人物检测"""
42
+ instances = self.net.infer(
43
+ cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
44
+ output_type='numpy',
45
+ pred_score_thr=0.5 # 适当提高置信度阈值加速判断
46
+ )
47
+ return instances.bboxes is not None
48
+
49
+ def _is_duplicate(self, frame):
50
+ """基于感知哈希的去重检测"""
51
+ current_hash = imagehash.dhash(Image.fromarray(frame))
52
+ for existing_hash in self.hash_dict.values():
53
+ if current_hash - existing_hash < HASH_THRESHOLD:
54
+ return True
55
+ return False
56
+
57
+ def process_video(self, video_path, output_dir):
58
+ """核心处理流程"""
59
+ clip = VideoFileClip(str(video_path))
60
+ output_path = Path(output_dir)
61
+ output_path.mkdir(parents=True, exist_ok=True)
62
+
63
+ # 初始化场景检测
64
+ prev_frame = None
65
+ frame_buffer = deque(maxlen=FRAME_BUFFER)
66
+
67
+ for i, frame in enumerate(clip.iter_frames()):
68
+ # 转换为OpenCV格式
69
+ cv_frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
70
+
71
+ # 动态抽帧策略
72
+ processed_frame = self._preprocess_frame(cv_frame)
73
+ if prev_frame is not None:
74
+ # 使用结构相似性检测场景变化
75
+ similarity = cv2.compareHist(
76
+ cv2.calcHist([processed_frame], [0], None, [256], [0, 256]),
77
+ cv2.calcHist([prev_frame], [0], None, [256], [0, 256]),
78
+ cv2.HISTCMP_CORREL
79
+ )
80
+ if similarity > (1 - MIN_SCENE_CHANGE):
81
+ continue
82
+
83
+ prev_frame = processed_frame
84
+
85
+ # 缓冲区去重检测
86
+ if any(cv2.absdiff(processed_frame, f).sum() < 1000 for f in frame_buffer):
87
+ continue
88
+ frame_buffer.append(processed_frame)
89
+
90
+ # 执行人物检测
91
+ if not self._has_human(cv_frame):
92
+ # 哈希去重检查
93
+ if not self._is_duplicate(frame):
94
+ frame_hash = imagehash.dhash(Image.fromarray(frame))
95
+ self.hash_dict[i] = frame_hash
96
+ cv2.imwrite(str(output_path / f"frame_{i:06d}.jpg"), cv_frame)
97
+
98
+ clip.close()
99
+
100
+ def main():
101
+ parser = argparse.ArgumentParser(description="提取视频中无人物出现的帧")
102
+ parser.add_argument("video_path", type=str, help="输入视频路径")
103
+ parser.add_argument("output_dir", type=str, help="输出目录路径")
104
+ args = parser.parse_args()
105
+
106
+ processor = VideoProcessor()
107
+ processor.process_video(args.video_path, args.output_dir)
108
+
109
+ if __name__ == "__main__":
110
+ main()