Spaces:
Runtime error
Runtime error
File size: 12,736 Bytes
6a4bb10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
from typing import List, Optional, Tuple, Dict
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
import enum
from dataclasses import dataclass
from typing import List, Dict, Any, Optional, Tuple
from collections import defaultdict
@dataclass(frozen=True)
class Action:
value: str # LM returned string for now
use_tool: bool # if use_tool == False -> propose answer
error: Optional[str] = None
def lm_output_to_action(lm_output: str) -> Action:
propose_solution = bool("<solution>" in lm_output)
return Action(lm_output, not propose_solution)
from typing import Mapping
import re
import signal
from contextlib import contextmanager
from IPython.core.interactiveshell import InteractiveShell
from IPython.utils import io
from typing import Any
from abc import ABC, abstractmethod
from typing import Any
class Tool(ABC):
"""Abstract class for a tool."""
name: str
signature: str
description: str
@abstractmethod
def __call__(self, *args: Any, **kwds: Any) -> str:
"""Execute the tool with the given args and return the output."""
# execute tool with abitrary args
pass
def reset(self) -> None:
"""Reset the tool to its initial state."""
pass
class PythonREPL(Tool):
"""A tool for running python code in a REPL."""
name = "PythonREPL"
# This PythonREPL is not used by the environment; It is THE ENVIRONMENT.
signature = "NOT_USED"
description = "NOT_USED"
def __init__(
self,
user_ns: Mapping[str, Any],
timeout: int = 30,
) -> None:
super().__init__()
self.user_ns = user_ns
self.timeout = timeout
self.reset()
@contextmanager
def time_limit(self, seconds):
def signal_handler(signum, frame):
raise TimeoutError(f"Timed out after {seconds} seconds.")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0) # Disable the alarm
def reset(self) -> None:
InteractiveShell.clear_instance()
self.shell = InteractiveShell.instance(
# NOTE: shallow copy is needed to avoid
# shell modifying the original user_ns dict
user_ns=dict(self.user_ns),
colors="NoColor",
)
def __call__(self, query: str) -> str:
"""Use the tool and return observation"""
with io.capture_output() as captured:
_ = self.shell.run_cell(query, store_history=True)
output = captured.stdout
if output == "":
output = "[Executed Successfully with No Output]"
# replace potentially sensitive filepath
# e.g., File /mint/mint/tools/python_tool.py:30, in PythonREPL.time_limit.<locals>.signal_handler(signum, frame)
# with File <filepath>:30, in PythonREPL.time_limit.<locals>.signal_handler(signum, frame)
# use re
output = re.sub(
# r"File (/mint/)mint/tools/python_tool.py:(\d+)",
r"File (.*)mint/tools/python_tool.py:(\d+)",
r"File <hidden_filepath>:\1",
output,
)
if len(output) > 2000:
output = output[:2000] + "...\n[Output Truncated]"
return output
class ParseError(Exception):
pass
def parse_action(action: Action) -> Tuple[str, Dict[str, Any]]:
"""Define the parsing logic."""
lm_output = "\n" + action.value + "\n"
output = {}
try:
if not action.use_tool:
answer = "\n".join(
[
i.strip()
for i in re.findall(
r"<solution>(.*?)</solution>", lm_output, re.DOTALL
)
]
)
if answer == "":
raise ParseError("No answer found.")
output["answer"] = answer
else:
env_input = "\n".join(
[
i.strip()
for i in re.findall(
r"<execute>(.*?)</execute>", lm_output, re.DOTALL
)
]
)
if env_input == "":
raise ParseError("No code found.")
output["env_input"] = env_input
except Exception as e:
raise ParseError(e)
return output
python_repl = PythonREPL(
user_ns={},
)
import gradio as gr
import llama_cpp
import llama_cpp.llama_tokenizer
import torch
if torch.cuda.is_available():
CodeActAgent_llm = llama_cpp.Llama.from_pretrained(
repo_id="xingyaoww/CodeActAgent-Mistral-7b-v0.1.q8_0.gguf",
filename="*q8_0.gguf",
verbose=False,
n_gpu_layers = -1,
n_ctx = 3060
)
else:
CodeActAgent_llm = llama_cpp.Llama.from_pretrained(
repo_id="xingyaoww/CodeActAgent-Mistral-7b-v0.1.q8_0.gguf",
filename="*q8_0.gguf",
verbose=False,
#n_gpu_layers = -1,
n_ctx = 3060
)
system_prompt = '''
You are a helpful assistant assigned with the task of problem-solving. To achieve this, you will be using an interactive coding environment equipped with a variety of tool functions to assist you throughout the process.
At each turn, you should first provide your step-by-step thinking for solving the task. Your thought process should be enclosed using "<thought>" tag, for example: <thought> I need to print "Hello World!" </thought>.
After that, you have two options:
1) Interact with a Python programming environment and receive the corresponding output. Your code should be enclosed using "<execute>" tag, for example: <execute> print("Hello World!") </execute>.
2) Directly provide a solution that adheres to the required format for the given task. Your solution should be enclosed using "<solution>" tag, for example: The answer is <solution> A </solution>.
You have {max_total_steps} chances to interact with the environment or propose a solution. You can only propose a solution {max_propose_solution} times.
'''.format(
**{
"max_total_steps": 5,
"max_propose_solution": 2,
}
)
def exe_to_md(str_):
req = str_.replace("<execute>" ,"```python").replace("</execute>" ,"```").replace("<solution>" ,"```python").replace("</solution>" ,"```")
if "<thought>" in req and "def " in req:
req = req.replace("<thought>" ,"```python").replace("</thought>" ,"```")
return req
def md_to_exe(str_):
return str_.replace("```python", "<execute>").replace("```", "</execute>")
def clear_session() -> History:
return '', []
def modify_system_session(system: str) -> str:
if system is None or len(system) == 0:
system = default_system
return system, system, []
def history_to_messages(history: History, system: str) -> Messages:
messages = [{'role': "system", 'content': system}]
for h in history:
messages.append({'role': "user", 'content': h[0]})
if h[1] != "π":
messages.append({'role': "assistant", 'content':
md_to_exe(h[1])
})
return messages
def messages_to_history(messages: Messages) -> Tuple[str, History]:
assert messages[0]['role'] == "system"
system = messages[0]['content']
history = []
import numpy as np
import pandas as pd
from copy import deepcopy
messages = deepcopy(messages)
if messages[-1]["role"] == "user":
messages += [{"role": "assistant", "content": "π"}]
messages_ = []
for ele in messages[1:]:
if not messages_:
messages_.append(ele)
else:
if messages_[-1]["role"] == ele["role"]:
continue
else:
messages_.append(ele)
history = pd.DataFrame(np.asarray(messages_).reshape([-1, 2]).tolist()).applymap(
lambda x: x["content"]
).applymap(
exe_to_md
).values.tolist()
return system, history
def model_chat(query: Optional[str], history: Optional[History], system: str
) -> Tuple[str, str, History]:
if query is None:
query = ''
if history is None:
history = []
messages = history_to_messages(history, system)
if query:
messages.append({'role': "user", 'content': query})
response = CodeActAgent_llm.create_chat_completion(
messages=messages,
stream=True,
top_p = 0.9,
temperature = 0.01
)
from IPython.display import clear_output
lm_output = ""
for chunk in response:
delta = chunk["choices"][0]["delta"]
if "content" not in delta:
continue
lm_output += delta["content"]
lm_output = lm_output.replace("<solution>", "<execute>").replace("</solution>", "</execute>")
if "<execute>" in lm_output:
action_out = lm_output_to_action(lm_output)
parsed = parse_action(action_out)
env_input = parsed["env_input"]
obs = python_repl(env_input).strip()
obs = '''
Observation:
{}
'''.format(obs).strip()
system, history = messages_to_history(messages + [
{'role': "assistant",
'content': exe_to_md(lm_output)},
{
'role': "user",
"content": obs
}
])
elif "<thought>" in lm_output:
system, history = messages_to_history(messages + [
{'role': "assistant",
'content': exe_to_md(lm_output)},
])
else:
system, history = messages_to_history(messages + [
{'role': "assistant",
'content': exe_to_md(lm_output)},
])
return "", history, system
with gr.Blocks() as demo:
gr.Markdown("""<center><font size=8>CodeActAgent Mistral 7B Bot π€</center>""")
with gr.Row():
with gr.Column(scale=3):
system_input = gr.Textbox(value=system_prompt, lines=1, label='System', visible = False)
with gr.Column(scale=1):
modify_system = gr.Button("π οΈ Set system prompt and clear history", scale=2, visible = False)
system_state = gr.Textbox(value=system_prompt, visible=False)
chatbot = gr.Chatbot(label='CodeActAgent-Mistral-7b-v0.1')
textbox = gr.Textbox(lines=2, label='Input')
with gr.Row():
clear_history = gr.Button("π§Ή Clear History")
sumbit = gr.Button("π Send")
sumbit.click(model_chat,
inputs=[textbox, chatbot, system_state],
outputs=[textbox, chatbot, system_input],
concurrency_limit = 100)
clear_history.click(fn=clear_session,
inputs=[],
outputs=[textbox, chatbot])
modify_system.click(fn=modify_system_session,
inputs=[system_input],
outputs=[system_state, system_input, chatbot])
gr.Examples(
[
"teach me how to use numpy.",
"Give me a python function give the divide of number it self 10 times.",
'''
Plot box plot with pandas and save it to local.
'''.strip(),
'''
Write a python code about, download image to local from url, the format as :
url = f'https://image.pollinations.ai/prompt/{prompt}'
where prompt as the input of download function.
'''.strip(),
"Use this function download a image of bee.",
'''
Draw a picture teach me what linear regression is.
'''.strip(),
"Use more points and draw the image with the line fitted.",
'''
Write a piece of Python code to simulate the financial transaction process and draw a financial images chart by lineplot of Poisson process.
'''.strip(),
#"Add monotonic increasing trend on it.",
"Add a Trigonometric function loop on it.",
],
inputs = textbox,
label = "Task Prompt: \n(Used to give the function or task defination on the head)",
)
gr.Examples(
[
'''
Give me the function defination. π‘
'''.strip(),
'''
Correct it. βΉοΈβ
'''.strip(),
'''
Save the output as image πΌοΈ to local. β¬
'''.strip(),
'''
Good Job π
'''.strip(),
],
inputs = textbox,
label = "Action Prompt: \n(Used to specify downstream actions taken by LLM, such as modifying errors, saving running results locally, saying you did a good job, etc.)",
)
demo.queue(api_open=False)
demo.launch(max_threads=30, share = False) |