Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
# FFN | |
def FeedForward(dim, mult=4): | |
inner_dim = int(dim * mult) | |
return nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, inner_dim, bias=False), | |
nn.GELU(), | |
nn.Linear(inner_dim, dim, bias=False), | |
) | |
def reshape_tensor(x, heads): | |
bs, length, width = x.shape | |
# (bs, length, width) --> (bs, length, n_heads, dim_per_head) | |
x = x.view(bs, length, heads, -1) | |
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) | |
x = x.transpose(1, 2) | |
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) | |
x = x.reshape(bs, heads, length, -1) | |
return x | |
class PerceiverAttention(nn.Module): | |
def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): | |
super().__init__() | |
self.scale = dim_head ** -0.5 | |
self.dim_head = dim_head | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x, latents): | |
""" | |
Args: | |
x (torch.Tensor): image features | |
shape (b, n1, D) | |
latent (torch.Tensor): latent features | |
shape (b, n2, D) | |
""" | |
x = self.norm1(x) | |
latents = self.norm2(latents) | |
b, seq_len, _ = latents.shape | |
q = self.to_q(latents) | |
kv_input = torch.cat((x, latents), dim=-2) | |
k, v = self.to_kv(kv_input).chunk(2, dim=-1) | |
q = reshape_tensor(q, self.heads) | |
k = reshape_tensor(k, self.heads) | |
v = reshape_tensor(v, self.heads) | |
# attention | |
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
out = weight @ v | |
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) | |
return self.to_out(out) | |
class LocalFacialExtractor(nn.Module): | |
def __init__( | |
self, | |
dim=1024, | |
depth=10, | |
dim_head=64, | |
heads=16, | |
num_id_token=5, | |
num_queries=32, | |
output_dim=2048, | |
ff_mult=4, | |
): | |
""" | |
Initializes the LocalFacialExtractor class. | |
Parameters: | |
- dim (int): The dimensionality of latent features. | |
- depth (int): Total number of PerceiverAttention and FeedForward layers. | |
- dim_head (int): Dimensionality of each attention head. | |
- heads (int): Number of attention heads. | |
- num_id_token (int): Number of tokens used for identity features. | |
- num_queries (int): Number of query tokens for the latent representation. | |
- output_dim (int): Output dimension after projection. | |
- ff_mult (int): Multiplier for the feed-forward network hidden dimension. | |
""" | |
super().__init__() | |
# Storing identity token and query information | |
self.num_id_token = num_id_token | |
self.dim = dim | |
self.num_queries = num_queries | |
assert depth % 5 == 0 | |
self.depth = depth // 5 | |
scale = dim ** -0.5 | |
# Learnable latent query embeddings | |
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale) | |
# Projection layer to map the latent output to the desired dimension | |
self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim)) | |
# Attention and FeedForward layer stack | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
nn.ModuleList( | |
[ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer | |
FeedForward(dim=dim, mult=ff_mult), # FeedForward layer | |
] | |
) | |
) | |
# Mappings for each of the 5 different ViT features | |
for i in range(5): | |
setattr( | |
self, | |
f'mapping_{i}', | |
nn.Sequential( | |
nn.Linear(1024, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, dim), | |
), | |
) | |
# Mapping for identity embedding vectors | |
self.id_embedding_mapping = nn.Sequential( | |
nn.Linear(1280, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, dim * num_id_token), | |
) | |
def forward(self, x, y): | |
""" | |
Forward pass for LocalFacialExtractor. | |
Parameters: | |
- x (Tensor): The input identity embedding tensor of shape (batch_size, 1280). | |
- y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024). | |
Returns: | |
- Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim). | |
""" | |
# Repeat latent queries for the batch size | |
latents = self.latents.repeat(x.size(0), 1, 1) | |
# Map the identity embedding to tokens | |
x = self.id_embedding_mapping(x) | |
x = x.reshape(-1, self.num_id_token, self.dim) | |
# Concatenate identity tokens with the latent queries | |
latents = torch.cat((latents, x), dim=1) | |
# Process each of the 5 visual feature inputs | |
for i in range(5): | |
vit_feature = getattr(self, f'mapping_{i}')(y[i]) | |
ctx_feature = torch.cat((x, vit_feature), dim=1) | |
# Pass through the PerceiverAttention and FeedForward layers | |
for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]: | |
latents = attn(ctx_feature, latents) + latents | |
latents = ff(latents) + latents | |
# Retain only the query latents | |
latents = latents[:, :self.num_queries] | |
# Project the latents to the output dimension | |
latents = latents @ self.proj_out | |
return latents | |
class PerceiverCrossAttention(nn.Module): | |
""" | |
Args: | |
dim (int): Dimension of the input latent and output. Default is 3072. | |
dim_head (int): Dimension of each attention head. Default is 128. | |
heads (int): Number of attention heads. Default is 16. | |
kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048. | |
Attributes: | |
scale (float): Scaling factor used in dot-product attention for numerical stability. | |
norm1 (nn.LayerNorm): Layer normalization applied to the input image features. | |
norm2 (nn.LayerNorm): Layer normalization applied to the latent features. | |
to_q (nn.Linear): Linear layer for projecting the latent features into queries. | |
to_kv (nn.Linear): Linear layer for projecting the input features into keys and values. | |
to_out (nn.Linear): Linear layer for outputting the final result after attention. | |
""" | |
def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): | |
super().__init__() | |
self.scale = dim_head ** -0.5 | |
self.dim_head = dim_head | |
self.heads = heads | |
inner_dim = dim_head * heads | |
# Layer normalization to stabilize training | |
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) | |
self.norm2 = nn.LayerNorm(dim) | |
# Linear transformations to produce queries, keys, and values | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x, latents): | |
""" | |
Args: | |
x (torch.Tensor): Input image features with shape (batch_size, n1, D), where: | |
- batch_size (b): Number of samples in the batch. | |
- n1: Sequence length (e.g., number of patches or tokens). | |
- D: Feature dimension. | |
latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where: | |
- n2: Number of latent elements. | |
Returns: | |
torch.Tensor: Attention-modulated features with shape (batch_size, n2, D). | |
""" | |
# Apply layer normalization to the input image and latent features | |
x = self.norm1(x) | |
latents = self.norm2(latents) | |
b, seq_len, _ = latents.shape | |
# Compute queries, keys, and values | |
q = self.to_q(latents) | |
k, v = self.to_kv(x).chunk(2, dim=-1) | |
# Reshape tensors to split into attention heads | |
q = reshape_tensor(q, self.heads) | |
k = reshape_tensor(k, self.heads) | |
v = reshape_tensor(v, self.heads) | |
# Compute attention weights | |
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
# Compute the output via weighted combination of values | |
out = weight @ v | |
# Reshape and permute to prepare for final linear transformation | |
out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) | |
return self.to_out(out) |