Spaces:
Runtime error
Runtime error
import os | |
import math | |
import time | |
import numpy as np | |
import random | |
import threading | |
from PIL import Image, ImageOps | |
from moviepy.editor import VideoFileClip | |
from datetime import datetime, timedelta | |
from huggingface_hub import hf_hub_download, snapshot_download | |
import insightface | |
from insightface.app import FaceAnalysis | |
from facexlib.parsing import init_parsing_model | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
import torch | |
from diffusers import CogVideoXDPMScheduler | |
from diffusers.utils import load_image | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.training_utils import free_memory | |
from util.utils import * | |
from util.rife_model import load_rife_model, rife_inference_with_latents | |
from models.utils import process_face_embeddings | |
from models.transformer_consisid import ConsisIDTransformer3DModel | |
from models.pipeline_consisid import ConsisIDPipeline | |
from models.eva_clip import create_model_and_transforms | |
from models.eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
from models.eva_clip.utils_qformer import resize_numpy_image_long | |
import argparse | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def main(): | |
parser = argparse.ArgumentParser(description="ConsisID Command Line Interface") | |
parser.add_argument("image_path", type=str, help="Path to the input image") | |
parser.add_argument("prompt", type=str, help="Prompt text for the generation") | |
parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps") | |
parser.add_argument("--guidance_scale", type=float, default=7.0, help="Guidance scale") | |
parser.add_argument("--seed", type=int, default=42, help="Random seed for generation") | |
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save the output video") | |
parser.add_argument("--num_videos", type=int, default=1, help="Number of videos to generate") | |
args = parser.parse_args() | |
# Download models | |
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran") | |
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife") | |
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") | |
model_path = "BestWishYsh/ConsisID-preview" | |
lora_path = None | |
lora_rank = 128 | |
dtype = torch.bfloat16 | |
if os.path.exists(os.path.join(model_path, "transformer_ema")): | |
subfolder = "transformer_ema" | |
else: | |
subfolder = "transformer" | |
transformer = ConsisIDTransformer3DModel.from_pretrained_cus(model_path, subfolder=subfolder) | |
scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler") | |
try: | |
is_kps = transformer.config.is_kps | |
except: | |
is_kps = False | |
# 1. load face helper models | |
face_helper = FaceRestoreHelper( | |
upscale_factor=1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
device=device, | |
model_rootpath=os.path.join(model_path, "face_encoder") | |
) | |
face_helper.face_parse = None | |
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=os.path.join(model_path, "face_encoder")) | |
face_helper.face_det.eval() | |
face_helper.face_parse.eval() | |
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True) | |
face_clip_model = model.visual | |
face_clip_model.eval() | |
eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN) | |
eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD) | |
if not isinstance(eva_transform_mean, (list, tuple)): | |
eva_transform_mean = (eva_transform_mean,) * 3 | |
if not isinstance(eva_transform_std, (list, tuple)): | |
eva_transform_std = (eva_transform_std,) * 3 | |
eva_transform_mean = eva_transform_mean | |
eva_transform_std = eva_transform_std | |
face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider']) | |
handler_ante = insightface.model_zoo.get_model(f'{model_path}/face_encoder/models/antelopev2/glintr100.onnx', providers=['CUDAExecutionProvider']) | |
face_main_model.prepare(ctx_id=0, det_size=(640, 640)) | |
handler_ante.prepare(ctx_id=0) | |
face_clip_model.to(device, dtype=dtype) | |
face_helper.face_det.to(device) | |
face_helper.face_parse.to(device) | |
transformer.to(device, dtype=dtype) | |
free_memory() | |
pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, scheduler=scheduler, torch_dtype=dtype) | |
# If you're using with lora, add this code | |
if lora_path: | |
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1") | |
pipe.fuse_lora(lora_scale=1 / lora_rank) | |
scheduler_args = {} | |
if "variance_type" in pipe.scheduler.config: | |
variance_type = pipe.scheduler.config.variance_type | |
if variance_type in ["learned", "learned_range"]: | |
variance_type = "fixed_small" | |
scheduler_args["variance_type"] = variance_type | |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args) | |
#pipe.to(device) | |
pipe.enable_model_cpu_offload() | |
pipe.enable_sequential_cpu_offload() | |
pipe.vae.enable_slicing() | |
pipe.vae.enable_tiling() | |
os.makedirs(args.output_dir, exist_ok=True) | |
upscale_model = load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device) | |
frame_interpolation_model = load_rife_model("model_rife") | |
def infer( | |
prompt: str, | |
image_input: str, | |
num_inference_steps: int, | |
guidance_scale: float, | |
seed: int = 42, | |
): | |
if seed == -1: | |
seed = random.randint(0, 2**8 - 1) | |
id_image = np.array(ImageOps.exif_transpose(Image.open(image_input)).convert("RGB")) | |
id_image = resize_numpy_image_long(id_image, 1024) | |
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante, | |
eva_transform_mean, eva_transform_std, | |
face_main_model, device, dtype, id_image, | |
original_id_image=id_image, is_align_face=True, | |
cal_uncond=False) | |
if is_kps: | |
kps_cond = face_kps | |
else: | |
kps_cond = None | |
tensor = align_crop_face_image.cpu().detach() | |
tensor = tensor.squeeze() | |
tensor = tensor.permute(1, 2, 0) | |
tensor = tensor.numpy() * 255 | |
tensor = tensor.astype(np.uint8) | |
image = ImageOps.exif_transpose(Image.fromarray(tensor)) | |
prompt = prompt.strip('"') | |
generator = torch.Generator(device).manual_seed(seed) if seed else None | |
video_pt = pipe( | |
prompt=prompt, | |
image=image, | |
num_videos_per_prompt=1, | |
num_inference_steps=num_inference_steps, | |
num_frames=49, | |
use_dynamic_cfg=False, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
id_vit_hidden=id_vit_hidden, | |
id_cond=id_cond, | |
kps_cond=kps_cond, | |
output_type="pt", | |
).frames | |
free_memory() | |
return (video_pt, seed) | |
def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8, output_dir = "output"): | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
video_path = f"./{output_dir}/{timestamp}.mp4" | |
os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
export_to_video(tensor, video_path, fps=fps) | |
return video_path | |
def convert_to_gif(video_path): | |
clip = VideoFileClip(video_path) | |
gif_path = video_path.replace(".mp4", ".gif") | |
clip.write_gif(gif_path, fps=8) | |
return gif_path | |
for i in range(args.num_videos): | |
seed = random.randint(0, 2**8 - 1) if args.seed == -1 else args.seed + i | |
latents, seed = infer( | |
args.prompt, | |
args.image_path, | |
num_inference_steps=args.num_inference_steps, | |
guidance_scale=args.guidance_scale, | |
seed=seed, | |
) | |
batch_size = latents.shape[0] | |
batch_video_frames = [] | |
for batch_idx in range(batch_size): | |
pt_image = latents[batch_idx] | |
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])]) | |
image_np = VaeImageProcessor.pt_to_numpy(pt_image) | |
image_pil = VaeImageProcessor.numpy_to_pil(image_np) | |
batch_video_frames.append(image_pil) | |
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6), output_dir=args.output_dir) | |
gif_path = convert_to_gif(video_path) | |
print(f"Video {i+1} saved to: {video_path}") | |
print(f"GIF {i+1} saved to: {gif_path}") | |
if __name__ == "__main__": | |
main() |