Spaces:
Runtime error
Runtime error
import os | |
import gc | |
import cv2 | |
import json | |
import math | |
import decord | |
import random | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from decord import VideoReader | |
from contextlib import contextmanager | |
from func_timeout import FunctionTimedOut | |
from typing import Optional, Sized, Iterator | |
import torch | |
from torch.utils.data import Dataset, Sampler | |
import torch.nn.functional as F | |
from torchvision.transforms import ToPILImage | |
from torchvision import transforms | |
from accelerate.logging import get_logger | |
logger = get_logger(__name__) | |
import threading | |
log_lock = threading.Lock() | |
def log_error_to_file(error_message, video_path): | |
with log_lock: | |
with open("error_log.txt", "a") as f: | |
f.write(f"Error: {error_message}\n") | |
f.write(f"Video Path: {video_path}\n") | |
f.write("-" * 50 + "\n") | |
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): | |
stickwidth = 4 | |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | |
kps = np.array(kps) | |
w, h = image_pil.size | |
out_img = np.zeros([h, w, 3]) | |
for i in range(len(limbSeq)): | |
index = limbSeq[i] | |
color = color_list[index[0]] | |
x = kps[index][:, 0] | |
y = kps[index][:, 1] | |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | |
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) | |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | |
out_img = (out_img * 0.6).astype(np.uint8) | |
for idx_kp, kp in enumerate(kps): | |
color = color_list[idx_kp] | |
x, y = kp | |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | |
out_img_pil = Image.fromarray(out_img.astype(np.uint8)) | |
return out_img_pil | |
def VideoReader_contextmanager(*args, **kwargs): | |
vr = VideoReader(*args, **kwargs) | |
try: | |
yield vr | |
finally: | |
del vr | |
gc.collect() | |
def get_valid_segments(valid_frame, tolerance=5): | |
valid_positions = sorted(set(valid_frame['face']).union(set(valid_frame['head']))) | |
valid_segments = [] | |
current_segment = [valid_positions[0]] | |
for i in range(1, len(valid_positions)): | |
if valid_positions[i] - valid_positions[i - 1] <= tolerance: | |
current_segment.append(valid_positions[i]) | |
else: | |
valid_segments.append(current_segment) | |
current_segment = [valid_positions[i]] | |
if current_segment: | |
valid_segments.append(current_segment) | |
return valid_segments | |
def get_frame_indices_adjusted_for_face(valid_frames, n_frames): | |
valid_length = len(valid_frames) | |
if valid_length >= n_frames: | |
return valid_frames[:n_frames] | |
additional_frames_needed = n_frames - valid_length | |
repeat_indices = [] | |
for i in range(additional_frames_needed): | |
index_to_repeat = i % valid_length | |
repeat_indices.append(valid_frames[index_to_repeat]) | |
all_indices = valid_frames + repeat_indices | |
all_indices.sort() | |
return all_indices | |
def generate_frame_indices_for_face(n_frames, sample_stride, valid_frame, tolerance=7, skip_frames_start_percent=0.0, skip_frames_end_percent=1.0, skip_frames_start=0, skip_frames_end=0): | |
valid_segments = get_valid_segments(valid_frame, tolerance) | |
selected_segment = max(valid_segments, key=len) | |
valid_length = len(selected_segment) | |
if skip_frames_start_percent != 0.0 or skip_frames_end_percent != 1.0: | |
# print("use skip frame percent") | |
valid_start = int(valid_length * skip_frames_start_percent) | |
valid_end = int(valid_length * skip_frames_end_percent) | |
elif skip_frames_start != 0 or skip_frames_end != 0: | |
# print("use skip frame") | |
valid_start = skip_frames_start | |
valid_end = valid_length - skip_frames_end | |
else: | |
# print("no use skip frame") | |
valid_start = 0 | |
valid_end = valid_length | |
if valid_length <= n_frames: | |
return get_frame_indices_adjusted_for_face(selected_segment, n_frames), valid_length | |
else: | |
adjusted_length = valid_end - valid_start | |
if adjusted_length <= 0: | |
print(f"video_length: {valid_length}, adjusted_length: {adjusted_length}, valid_start:{valid_start}, skip_frames_end: {valid_end}") | |
raise ValueError("Skipping too many frames results in no frames left to sample.") | |
clip_length = min(adjusted_length, (n_frames - 1) * sample_stride + 1) | |
start_idx_position = random.randint(valid_start, valid_end - clip_length) | |
start_frame = selected_segment[start_idx_position] | |
selected_frames = [] | |
for i in range(n_frames): | |
next_frame = start_frame + i * sample_stride | |
if next_frame in selected_segment: | |
selected_frames.append(next_frame) | |
else: | |
break | |
if len(selected_frames) < n_frames: | |
return get_frame_indices_adjusted_for_face(selected_frames, n_frames), len(selected_frames) | |
return selected_frames, len(selected_frames) | |
def frame_has_required_confidence(bbox_data, frame, ID, conf_threshold=0.88): | |
frame_str = str(frame) | |
if frame_str not in bbox_data: | |
return False | |
frame_data = bbox_data[frame_str] | |
face_conf = any( | |
item['confidence'] > conf_threshold and item['new_track_id'] == ID | |
for item in frame_data.get('face', []) | |
) | |
head_conf = any( | |
item['confidence'] > conf_threshold and item['new_track_id'] == ID | |
for item in frame_data.get('head', []) | |
) | |
return face_conf and head_conf | |
def select_mask_frames_from_index(batch_frame, original_batch_frame, valid_id, corresponding_data, control_sam2_frame, | |
valid_frame, bbox_data, base_dir, min_distance=3, min_frames=1, max_frames=5, | |
mask_type='face', control_mask_type='head', dense_masks=False, | |
ensure_control_frame=True): | |
""" | |
Selects frames with corresponding mask images while ensuring a minimum distance constraint between frames, | |
and that the frames exist in both batch_frame and valid_frame. | |
Parameters: | |
base_path (str): Base directory where the JSON files and mask results are located. | |
min_distance (int): Minimum distance between selected frames. | |
min_frames (int): Minimum number of frames to select. | |
max_frames (int): Maximum number of frames to select. | |
mask_type (str): Type of mask to select frames for ('face' or 'head'). | |
control_mask_type (str): Type of mask used for control frame selection ('face' or 'head'). | |
Returns: | |
dict: A dictionary where keys are IDs and values are lists of selected mask PNG paths. | |
""" | |
# Helper function to randomly select frames with at least X frames apart | |
def select_frames_with_distance_constraint(frames, num_frames, min_distance, control_frame, bbox_data, ID, | |
ensure_control_frame=True, fallback=True): | |
""" | |
Selects frames with a minimum distance constraint. If not enough frames can be selected, a fallback plan is applied. | |
Parameters: | |
frames (list): List of frame indices to select from. | |
num_frames (int): Number of frames to select. | |
min_distance (int): Minimum distance between selected frames. | |
control_frame (int): The control frame that must always be included. | |
fallback (bool): Whether to apply a fallback strategy if not enough frames meet the distance constraint. | |
Returns: | |
list: List of selected frames. | |
""" | |
conf_thresholds = [0.95, 0.94, 0.93, 0.92, 0.91, 0.90] | |
if ensure_control_frame: | |
selected_frames = [control_frame] # Ensure control frame is always included | |
else: | |
valid_initial_frames = [] | |
for conf_threshold in conf_thresholds: | |
valid_initial_frames = [ | |
f for f in frames | |
if frame_has_required_confidence(bbox_data, f, ID, conf_threshold=conf_threshold) | |
] | |
if valid_initial_frames: | |
break | |
if valid_initial_frames: | |
selected_frames = [random.choice(valid_initial_frames)] | |
else: | |
# If no frame meets the initial confidence, fall back to a random frame (or handle as per your preference) | |
selected_frames = [random.choice(frames)] | |
available_frames = [f for f in frames if f != selected_frames[0]] # Exclude control frame for random selection | |
random.shuffle(available_frames) # Shuffle to introduce randomness | |
while available_frames and len(selected_frames) < num_frames: | |
last_selected_frame = selected_frames[-1] | |
valid_choices = [] | |
for conf_threshold in conf_thresholds: | |
valid_choices = [ | |
f for f in available_frames | |
if abs(f - last_selected_frame) >= min_distance and | |
frame_has_required_confidence(bbox_data, f, ID, conf_threshold=conf_threshold) | |
] | |
if valid_choices: | |
break | |
if valid_choices: | |
frame = random.choice(valid_choices) | |
available_frames.remove(frame) | |
selected_frames.append(frame) | |
else: | |
if fallback: | |
# Fallback strategy: uniformly distribute remaining frames if distance constraint cannot be met | |
remaining_needed = num_frames - len(selected_frames) | |
remaining_frames = available_frames[:remaining_needed] | |
# Distribute the remaining frames evenly if possible | |
if remaining_frames: | |
step = max(1, len(remaining_frames) // remaining_needed) | |
evenly_selected = remaining_frames[::step][:remaining_needed] | |
selected_frames.extend(evenly_selected) | |
break | |
else: | |
break # No valid choices remain and no fallback strategy is allowed | |
if len(selected_frames) < num_frames: | |
return None | |
return selected_frames | |
# Convert batch_frame list to a set to remove duplicates | |
batch_frame_set = set(batch_frame) | |
# Dictionary to store selected mask PNGs | |
selected_masks_dict = {} | |
selected_bboxs_dict = {} | |
dense_masks_dict = {} | |
selected_frames_dict = {} | |
# ID | |
try: | |
mask_valid_frames = valid_frame[mask_type] # Select frames based on the specified mask type | |
control_valid_frames = valid_frame[control_mask_type] # Control frames for control_mask_type | |
except KeyError: | |
if mask_type not in valid_frame.keys(): | |
print(f"no valid {mask_type}") | |
if control_mask_type not in valid_frame.keys(): | |
print(f"no valid {control_mask_type}") | |
# Get the control frame for the control mask type | |
control_frame = control_sam2_frame[valid_id][control_mask_type] | |
# Filter frames to only those which are in both valid_frame and batch_frame_set | |
valid_frames = [] | |
# valid_frames = [frame for frame in mask_valid_frames if frame in control_valid_frames and frame in batch_frame_set] | |
for frame in mask_valid_frames: | |
if frame in control_valid_frames and frame in batch_frame_set: | |
# Check if bbox_data has 'head' or 'face' for the frame | |
if str(frame) in bbox_data: | |
frame_data = bbox_data[str(frame)] | |
if 'head' in frame_data or 'face' in frame_data: | |
valid_frames.append(frame) | |
# Ensure the control frame is included in the valid frames | |
if ensure_control_frame and (control_frame not in valid_frames): | |
valid_frames.append(control_frame) | |
# Select a random number of frames between min_frames and max_frames | |
num_frames_to_select = random.randint(min_frames, max_frames) | |
selected_frames = select_frames_with_distance_constraint(valid_frames, num_frames_to_select, min_distance, | |
control_frame, bbox_data, valid_id, ensure_control_frame) | |
# Store the selected frames as mask PNGs and bbox | |
selected_masks_dict[valid_id] = [] | |
selected_bboxs_dict[valid_id] = [] | |
# Initialize the dense_masks_dict entry for the current ID | |
dense_masks_dict[valid_id] = [] | |
# Store the selected frames in the dictionary | |
selected_frames_dict[valid_id] = selected_frames | |
if dense_masks: | |
for frame in original_batch_frame: | |
mask_data_path = f"{base_dir}/{valid_id}/annotated_frame_{int(frame):05d}.png" | |
mask_array = np.array(Image.open(mask_data_path)) | |
binary_mask = np.where(mask_array > 0, 1, 0).astype(np.uint8) | |
dense_masks_dict[valid_id].append(binary_mask) | |
for frame in selected_frames: | |
mask_data_path = f"{base_dir}/{valid_id}/annotated_frame_{frame:05d}.png" | |
mask_array = np.array(Image.open(mask_data_path)) | |
binary_mask = np.where(mask_array > 0, 1, 0).astype(np.uint8) | |
selected_masks_dict[valid_id].append(binary_mask) | |
try: | |
for item in bbox_data[f"{frame}"]["head"]: | |
if item['new_track_id'] == int(valid_id): | |
temp_bbox = item['box'] | |
break | |
except (KeyError, StopIteration): | |
try: | |
for item in bbox_data[f"{frame}"]["face"]: | |
if item['new_track_id'] == int(valid_id): | |
temp_bbox = item['box'] | |
break | |
except (KeyError, StopIteration): | |
temp_bbox = None | |
selected_bboxs_dict[valid_id].append(temp_bbox) | |
return selected_frames_dict, selected_masks_dict, selected_bboxs_dict, dense_masks_dict | |
def pad_tensor(tensor, target_size, dim=0): | |
padding_size = target_size - tensor.size(dim) | |
if padding_size > 0: | |
pad_shape = list(tensor.shape) | |
pad_shape[dim] = padding_size | |
padding_tensor = torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device) | |
return torch.cat([tensor, padding_tensor], dim=dim) | |
else: | |
return tensor[:target_size] | |
def crop_images(selected_frame_index, selected_bboxs_dict, video_reader, return_ori=False): | |
""" | |
Crop images based on given bounding boxes and frame indices from a video. | |
Args: | |
selected_frame_index (list): List of frame indices to be cropped. | |
selected_bboxs_dict (list of dict): List of dictionaries, each containing 'x1', 'y1', 'x2', 'y2' bounding box coordinates. | |
video_reader (VideoReader or list of numpy arrays): Video frames accessible by index, where each frame is a numpy array (H, W, C). | |
Returns: | |
list: A list of cropped images in PIL Image format. | |
""" | |
expanded_cropped_images = [] | |
original_cropped_images = [] | |
for frame_idx, bbox in zip(selected_frame_index, selected_bboxs_dict): | |
# Get the specific frame from the video reader using the frame index | |
frame = video_reader[frame_idx] # torch.tensor # (H, W, C) | |
# Extract bounding box coordinates and convert them to integers | |
x1, y1, x2, y2 = int(bbox['x1']), int(bbox['y1']), int(bbox['x2']), int(bbox['y2']) | |
# Crop to minimize the bounding box to a square | |
width = x2 - x1 # Calculate the width of the bounding box | |
height = y2 - y1 # Calculate the height of the bounding box | |
side_length = max(width, height) # Determine the side length of the square (max of width or height) | |
# Calculate the center of the bounding box | |
center_x = (x1 + x2) // 2 | |
center_y = (y1 + y2) // 2 | |
# Calculate new coordinates for the square region centered around the original bounding box | |
new_x1 = max(0, center_x - side_length // 2) # Ensure x1 is within image bounds | |
new_y1 = max(0, center_y - side_length // 2) # Ensure y1 is within image bounds | |
new_x2 = min(frame.shape[1], new_x1 + side_length) # Ensure x2 does not exceed image width | |
new_y2 = min(frame.shape[0], new_y1 + side_length) # Ensure y2 does not exceed image height | |
# Adjust coordinates if the cropped area is smaller than the desired side length | |
# Ensure final width and height are equal, keeping it a square | |
actual_width = new_x2 - new_x1 | |
actual_height = new_y2 - new_y1 | |
if actual_width < side_length: | |
# Adjust x1 or x2 to ensure the correct side length, while staying in bounds | |
if new_x1 == 0: | |
new_x2 = min(frame.shape[1], new_x1 + side_length) | |
else: | |
new_x1 = max(0, new_x2 - side_length) | |
if actual_height < side_length: | |
# Adjust y1 or y2 to ensure the correct side length, while staying in bounds | |
if new_y1 == 0: | |
new_y2 = min(frame.shape[0], new_y1 + side_length) | |
else: | |
new_y1 = max(0, new_y2 - side_length) | |
# Expand the square by 20% | |
expansion_ratio = 0.2 # Define the expansion ratio | |
expansion_amount = int(side_length * expansion_ratio) # Calculate the number of pixels to expand by | |
# Calculate expanded coordinates, ensuring they stay within image bounds | |
expanded_x1 = max(0, new_x1 - expansion_amount) # Expand left, ensuring x1 is within bounds | |
expanded_y1 = max(0, new_y1 - expansion_amount) # Expand up, ensuring y1 is within bounds | |
expanded_x2 = min(frame.shape[1], new_x2 + expansion_amount) # Expand right, ensuring x2 does not exceed bounds | |
expanded_y2 = min(frame.shape[0], new_y2 + expansion_amount) # Expand down, ensuring y2 does not exceed bounds | |
# Ensure the expanded area is still a square | |
expanded_width = expanded_x2 - expanded_x1 | |
expanded_height = expanded_y2 - expanded_y1 | |
final_side_length = min(expanded_width, expanded_height) | |
# Adjust to ensure square shape if necessary | |
if expanded_width != expanded_height: | |
if expanded_width > expanded_height: | |
expanded_x2 = expanded_x1 + final_side_length | |
else: | |
expanded_y2 = expanded_y1 + final_side_length | |
expanded_cropped_rgb_tensor = frame[expanded_y1:expanded_y2, expanded_x1:expanded_x2, :] | |
expanded_cropped_rgb = Image.fromarray(np.array(expanded_cropped_rgb_tensor)).convert('RGB') | |
expanded_cropped_images.append(expanded_cropped_rgb) | |
if return_ori: | |
original_cropped_rgb_tensor = frame[new_y1:new_y2, new_x1:new_x2, :] | |
original_cropped_rgb = Image.fromarray(np.array(original_cropped_rgb_tensor)).convert('RGB') | |
original_cropped_images.append(original_cropped_rgb) | |
return expanded_cropped_images, original_cropped_images | |
return expanded_cropped_images, None | |
def process_cropped_images(expand_images_pil, original_images_pil, target_size=(480, 480)): | |
""" | |
Process a list of cropped images in PIL format. | |
Parameters: | |
expand_images_pil (list of PIL.Image): List of cropped images in PIL format. | |
target_size (tuple of int): The target size for resizing images, default is (480, 480). | |
Returns: | |
torch.Tensor: A tensor containing the processed images. | |
""" | |
expand_face_imgs = [] | |
original_face_imgs = [] | |
if len(original_images_pil) != 0: | |
for expand_img, original_img in zip(expand_images_pil, original_images_pil): | |
expand_resized_img = expand_img.resize(target_size, Image.LANCZOS) | |
expand_src_img = np.array(expand_resized_img) | |
expand_src_img = np.transpose(expand_src_img, (2, 0, 1)) | |
expand_src_img = torch.from_numpy(expand_src_img).unsqueeze(0).float() | |
expand_face_imgs.append(expand_src_img) | |
original_resized_img = original_img.resize(target_size, Image.LANCZOS) | |
original_src_img = np.array(original_resized_img) | |
original_src_img = np.transpose(original_src_img, (2, 0, 1)) | |
original_src_img = torch.from_numpy(original_src_img).unsqueeze(0).float() | |
original_face_imgs.append(original_src_img) | |
expand_face_imgs = torch.cat(expand_face_imgs, dim=0) | |
original_face_imgs = torch.cat(original_face_imgs, dim=0) | |
else: | |
for expand_img in expand_images_pil: | |
expand_resized_img = expand_img.resize(target_size, Image.LANCZOS) | |
expand_src_img = np.array(expand_resized_img) | |
expand_src_img = np.transpose(expand_src_img, (2, 0, 1)) | |
expand_src_img = torch.from_numpy(expand_src_img).unsqueeze(0).float() | |
expand_face_imgs.append(expand_src_img) | |
expand_face_imgs = torch.cat(expand_face_imgs, dim=0) | |
original_face_imgs = None | |
return expand_face_imgs, original_face_imgs | |
class RandomSampler(Sampler[int]): | |
r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset. | |
If with replacement, then user can specify :attr:`num_samples` to draw. | |
Args: | |
data_source (Dataset): dataset to sample from | |
replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False`` | |
num_samples (int): number of samples to draw, default=`len(dataset)`. | |
generator (Generator): Generator used in sampling. | |
""" | |
data_source: Sized | |
replacement: bool | |
def __init__(self, data_source: Sized, replacement: bool = False, | |
num_samples: Optional[int] = None, generator=None) -> None: | |
self.data_source = data_source | |
self.replacement = replacement | |
self._num_samples = num_samples | |
self.generator = generator | |
self._pos_start = 0 | |
if not isinstance(self.replacement, bool): | |
raise TypeError(f"replacement should be a boolean value, but got replacement={self.replacement}") | |
if not isinstance(self.num_samples, int) or self.num_samples <= 0: | |
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}") | |
def num_samples(self) -> int: | |
# dataset size might change at runtime | |
if self._num_samples is None: | |
return len(self.data_source) | |
return self._num_samples | |
def __iter__(self) -> Iterator[int]: | |
n = len(self.data_source) | |
if self.generator is None: | |
seed = int(torch.empty((), dtype=torch.int64).random_().item()) | |
generator = torch.Generator() | |
generator.manual_seed(seed) | |
else: | |
generator = self.generator | |
if self.replacement: | |
for _ in range(self.num_samples // 32): | |
yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist() | |
yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist() | |
else: | |
for _ in range(self.num_samples // n): | |
xx = torch.randperm(n, generator=generator).tolist() | |
if self._pos_start >= n: | |
self._pos_start = 0 | |
print("xx top 10", xx[:10], self._pos_start) | |
for idx in range(self._pos_start, n): | |
yield xx[idx] | |
self._pos_start = (self._pos_start + 1) % n | |
self._pos_start = 0 | |
yield from torch.randperm(n, generator=generator).tolist()[:self.num_samples % n] | |
def __len__(self) -> int: | |
return self.num_samples | |
class SequentialSampler(Sampler[int]): | |
r"""Samples elements sequentially, always in the same order. | |
Args: | |
data_source (Dataset): dataset to sample from | |
""" | |
data_source: Sized | |
def __init__(self, data_source: Sized) -> None: | |
self.data_source = data_source | |
self._pos_start = 0 | |
def __iter__(self) -> Iterator[int]: | |
n = len(self.data_source) | |
for idx in range(self._pos_start, n): | |
yield idx | |
self._pos_start = (self._pos_start + 1) % n | |
self._pos_start = 0 | |
def __len__(self) -> int: | |
return len(self.data_source) | |
class ConsisID_Dataset(Dataset): | |
def __init__( | |
self, | |
instance_data_root: Optional[str] = None, | |
id_token: Optional[str] = None, | |
height=480, | |
width=640, | |
max_num_frames=49, | |
sample_stride=3, | |
skip_frames_start_percent=0.0, | |
skip_frames_end_percent=1.0, | |
skip_frames_start=0, | |
skip_frames_end=0, | |
text_drop_ratio=-1, | |
is_train_face=False, | |
is_single_face=False, | |
miss_tolerance=6, | |
min_distance=3, | |
min_frames=1, | |
max_frames=5, | |
is_cross_face=False, | |
is_reserve_face=False, | |
): | |
self.id_token = id_token or "" | |
# ConsisID | |
self.skip_frames_start_percent = skip_frames_start_percent | |
self.skip_frames_end_percent = skip_frames_end_percent | |
self.skip_frames_start = skip_frames_start | |
self.skip_frames_end = skip_frames_end | |
self.is_train_face = is_train_face | |
self.is_single_face = is_single_face | |
if is_train_face: | |
self.miss_tolerance = miss_tolerance | |
self.min_distance = min_distance | |
self.min_frames = min_frames | |
self.max_frames = max_frames | |
self.is_cross_face = is_cross_face | |
self.is_reserve_face = is_reserve_face | |
# Loading annotations from files | |
print(f"loading annotations from {instance_data_root} ...") | |
with open(instance_data_root, 'r') as f: | |
folder_anno = [i.strip().split(',') for i in f.readlines() if len(i.strip()) > 0] | |
self.instance_prompts = [] | |
self.instance_video_paths = [] | |
self.instance_annotation_base_paths = [] | |
for sub_root, anno, anno_base in tqdm(folder_anno): | |
print(anno) | |
self.instance_annotation_base_paths.append(anno_base) | |
with open(anno, 'r') as f: | |
sub_list = json.load(f) | |
for i in tqdm(sub_list): | |
path = os.path.join(sub_root, os.path.basename(i['path'])) | |
cap = i.get('cap', None) | |
fps = i.get('fps', 0) | |
duration = i.get('duration', 0) | |
if fps * duration < 49.0: | |
continue | |
self.instance_prompts.append(cap) | |
self.instance_video_paths.append(path) | |
self.num_instance_videos = len(self.instance_video_paths) | |
self.text_drop_ratio = text_drop_ratio | |
# Video params | |
self.sample_stride = sample_stride | |
self.max_num_frames = max_num_frames | |
self.height = height | |
self.width = width | |
def _get_frame_indices_adjusted(self, video_length, n_frames): | |
indices = list(range(video_length)) | |
additional_frames_needed = n_frames - video_length | |
repeat_indices = [] | |
for i in range(additional_frames_needed): | |
index_to_repeat = i % video_length | |
repeat_indices.append(indices[index_to_repeat]) | |
all_indices = indices + repeat_indices | |
all_indices.sort() | |
return all_indices | |
def _generate_frame_indices(self, video_length, n_frames, sample_stride, skip_frames_start_percent=0.0, skip_frames_end_percent=1.0, skip_frames_start=0, skip_frames_end=0): | |
if skip_frames_start_percent != 0.0 or skip_frames_end_percent != 1.0: | |
print("use skip frame percent") | |
valid_start = int(video_length * skip_frames_start_percent) | |
valid_end = int(video_length * skip_frames_end_percent) | |
elif skip_frames_start != 0 or skip_frames_end != 0: | |
print("use skip frame") | |
valid_start = skip_frames_start | |
valid_end = video_length - skip_frames_end | |
else: | |
print("no use skip frame") | |
valid_start = 0 | |
valid_end = video_length | |
adjusted_length = valid_end - valid_start | |
if adjusted_length <= 0: | |
print(f"video_length: {video_length}, adjusted_length: {adjusted_length}, valid_start:{valid_start}, skip_frames_end: {valid_end}") | |
raise ValueError("Skipping too many frames results in no frames left to sample.") | |
if video_length <= n_frames: | |
return self._get_frame_indices_adjusted(video_length, n_frames) | |
else: | |
# clip_length = min(video_length, (n_frames - 1) * sample_stride + 1) | |
# start_idx = random.randint(0, video_length - clip_length) | |
# frame_indices = np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist() | |
clip_length = min(adjusted_length, (n_frames - 1) * sample_stride + 1) | |
start_idx = random.randint(valid_start, valid_end - clip_length) | |
frame_indices = np.linspace(start_idx, start_idx + clip_length - 1, n_frames, dtype=int).tolist() | |
return frame_indices | |
def _short_resize_and_crop(self, frames, target_width, target_height): | |
""" | |
Resize frames and crop to the specified size. | |
Args: | |
frames (torch.Tensor): Input frames of shape [T, H, W, C]. | |
target_width (int): Desired width. | |
target_height (int): Desired height. | |
Returns: | |
torch.Tensor: Cropped frames of shape [T, target_height, target_width, C]. | |
""" | |
T, H, W, C = frames.shape | |
aspect_ratio = W / H | |
# Determine new dimensions ensuring they are at least target size | |
if aspect_ratio > target_width / target_height: | |
new_width = target_width | |
new_height = int(target_width / aspect_ratio) | |
if new_height < target_height: | |
new_height = target_height | |
new_width = int(target_height * aspect_ratio) | |
else: | |
new_height = target_height | |
new_width = int(target_height * aspect_ratio) | |
if new_width < target_width: | |
new_width = target_width | |
new_height = int(target_width / aspect_ratio) | |
resize_transform = transforms.Resize((new_height, new_width)) | |
crop_transform = transforms.CenterCrop((target_height, target_width)) | |
frames_tensor = frames.permute(0, 3, 1, 2) # (T, H, W, C) -> (T, C, H, W) | |
resized_frames = resize_transform(frames_tensor) | |
cropped_frames = crop_transform(resized_frames) | |
sample = cropped_frames.permute(0, 2, 3, 1) | |
return sample | |
def _resize_with_aspect_ratio(self, frames, target_width, target_height): | |
""" | |
Resize frames while maintaining the aspect ratio by padding or cropping. | |
Args: | |
frames (torch.Tensor): Input frames of shape [T, H, W, C]. | |
target_width (int): Desired width. | |
target_height (int): Desired height. | |
Returns: | |
torch.Tensor: Resized and padded frames of shape [T, target_height, target_width, C]. | |
""" | |
T, frame_height, frame_width, C = frames.shape | |
aspect_ratio = frame_width / frame_height # 1.77, 1280 720 -> 720 406 | |
target_aspect_ratio = target_width / target_height # 1.50, 720 480 -> | |
# If the frame is wider than the target, resize based on width | |
if aspect_ratio > target_aspect_ratio: | |
new_width = target_width | |
new_height = int(target_width / aspect_ratio) | |
else: | |
new_height = target_height | |
new_width = int(target_height * aspect_ratio) | |
# Resize using batch processing | |
frames = frames.permute(0, 3, 1, 2) # [T, C, H, W] | |
frames = F.interpolate(frames, size=(new_height, new_width), mode='bilinear', align_corners=False) | |
# Calculate padding | |
pad_top = (target_height - new_height) // 2 | |
pad_bottom = target_height - new_height - pad_top | |
pad_left = (target_width - new_width) // 2 | |
pad_right = target_width - new_width - pad_left | |
# Apply padding | |
frames = F.pad(frames, (pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0) | |
frames = frames.permute(0, 2, 3, 1) # [T, H, W, C] | |
return frames | |
def _save_frame(self, frame, name="1.png"): | |
# [H, W, C] -> [C, H, W] | |
img = frame | |
img = img.permute(2, 0, 1) | |
to_pil = ToPILImage() | |
img = to_pil(img) | |
img.save(name) | |
def _save_video(self, torch_frames, name="output.mp4"): | |
from moviepy.editor import ImageSequenceClip | |
frames_np = torch_frames.cpu().numpy() | |
if frames_np.dtype != 'uint8': | |
frames_np = frames_np.astype('uint8') | |
frames_list = [frame for frame in frames_np] | |
desired_fps = 24 | |
clip = ImageSequenceClip(frames_list, fps=desired_fps) | |
clip.write_videofile(name, codec="libx264") | |
def get_batch(self, idx): | |
decord.bridge.set_bridge("torch") | |
video_dir = self.instance_video_paths[idx] | |
text = self.instance_prompts[idx] | |
train_transforms = transforms.Compose( | |
[ | |
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0), | |
] | |
) | |
with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader: | |
video_num_frames = len(video_reader) | |
if self.is_train_face: | |
reserve_face_imgs = None | |
file_base_name = os.path.basename(video_dir.replace(".mp4", "")) | |
anno_base_path = self.instance_annotation_base_paths[idx] | |
valid_frame_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "valid_frame.json") | |
control_sam2_frame_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "control_sam2_frame.json") | |
corresponding_data_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "corresponding_data.json") | |
masks_data_path = os.path.join(anno_base_path, "track_masks_data", file_base_name, "tracking_mask_results") | |
bboxs_data_path = os.path.join(anno_base_path, "refine_bbox_jsons", f"{file_base_name}.json") | |
with open(corresponding_data_path, 'r') as f: | |
corresponding_data = json.load(f) | |
with open(control_sam2_frame_path, 'r') as f: | |
control_sam2_frame = json.load(f) | |
with open(valid_frame_path, 'r') as f: | |
valid_frame = json.load(f) | |
with open(bboxs_data_path, 'r') as f: | |
bbox_data = json.load(f) | |
if self.is_single_face: | |
if len(corresponding_data) != 1: | |
raise ValueError(f"Using single face, but {idx} is multi person.") | |
# get random valid id | |
valid_ids = [] | |
backup_ids = [] | |
for id_key, data in corresponding_data.items(): | |
if 'face' in data and 'head' in data: | |
valid_ids.append(id_key) | |
valid_id = random.choice(valid_ids) if valid_ids else (random.choice(backup_ids) if backup_ids else None) | |
if valid_id is None: | |
raise ValueError("No valid ID found: both valid_ids and backup_ids are empty.") | |
# get video | |
total_index = list(range(video_num_frames)) | |
batch_index, _ = generate_frame_indices_for_face(self.max_num_frames, self.sample_stride, valid_frame[valid_id], | |
self.miss_tolerance, self.skip_frames_start_percent, self.skip_frames_end_percent, | |
self.skip_frames_start, self.skip_frames_end) | |
if self.is_cross_face: | |
remaining_batch_index_index = [i for i in total_index if i not in batch_index] | |
try: | |
selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index( | |
remaining_batch_index_index, | |
batch_index, valid_id, | |
corresponding_data, control_sam2_frame, | |
valid_frame[valid_id], bbox_data, masks_data_path, | |
min_distance=self.min_distance, min_frames=self.min_frames, | |
max_frames=self.max_frames, dense_masks=True, | |
ensure_control_frame=False, | |
) | |
except: | |
selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index( | |
batch_index, | |
batch_index, valid_id, | |
corresponding_data, control_sam2_frame, | |
valid_frame[valid_id], bbox_data, masks_data_path, | |
min_distance=self.min_distance, min_frames=self.min_frames, | |
max_frames=self.max_frames, dense_masks=True, | |
ensure_control_frame=False, | |
) | |
else: | |
selected_frame_index, selected_masks_dict, selected_bboxs_dict, dense_masks_dict = select_mask_frames_from_index( | |
batch_index, | |
batch_index, valid_id, | |
corresponding_data, control_sam2_frame, | |
valid_frame[valid_id], bbox_data, masks_data_path, | |
min_distance=self.min_distance, min_frames=self.min_frames, | |
max_frames=self.max_frames, dense_masks=True, | |
ensure_control_frame=True, | |
) | |
if self.is_reserve_face: | |
reserve_frame_index, _, reserve_bboxs_dict, _ = select_mask_frames_from_index( | |
batch_index, | |
batch_index, valid_id, | |
corresponding_data, control_sam2_frame, | |
valid_frame[valid_id], bbox_data, masks_data_path, | |
min_distance=3, min_frames=4, | |
max_frames=4, dense_masks=False, | |
ensure_control_frame=False, | |
) | |
# get mask and aligned_face_img | |
selected_frame_index = selected_frame_index[valid_id] | |
valid_frame = valid_frame[valid_id] | |
selected_masks_dict = selected_masks_dict[valid_id] | |
selected_bboxs_dict = selected_bboxs_dict[valid_id] | |
dense_masks_dict = dense_masks_dict[valid_id] | |
if self.is_reserve_face: | |
reserve_frame_index = reserve_frame_index[valid_id] | |
reserve_bboxs_dict = reserve_bboxs_dict[valid_id] | |
selected_masks_tensor = torch.stack([torch.tensor(mask) for mask in selected_masks_dict]) | |
temp_dense_masks_tensor = torch.stack([torch.tensor(mask) for mask in dense_masks_dict]) | |
dense_masks_tensor = self._short_resize_and_crop(temp_dense_masks_tensor.unsqueeze(-1), self.width, self.height).squeeze(-1) # [T, H, W] -> [T, H, W, 1] -> [T, H, W] | |
expand_images_pil, original_images_pil = crop_images(selected_frame_index, selected_bboxs_dict, video_reader, return_ori=True) | |
expand_face_imgs, original_face_imgs = process_cropped_images(expand_images_pil, original_images_pil, target_size=(480, 480)) | |
if self.is_reserve_face: | |
reserve_images_pil, _ = crop_images(reserve_frame_index, reserve_bboxs_dict, video_reader, return_ori=False) | |
reserve_face_imgs, _ = process_cropped_images(reserve_images_pil, [], target_size=(480, 480)) | |
if len(expand_face_imgs) == 0 or len(original_face_imgs) == 0: | |
raise ValueError(f"No face detected in input image pool") | |
# post process id related data | |
expand_face_imgs = pad_tensor(expand_face_imgs, self.max_frames, dim=0) | |
original_face_imgs = pad_tensor(original_face_imgs, self.max_frames, dim=0) | |
selected_frame_index = torch.tensor(selected_frame_index) # torch.Size(([15, 13]) [N1] | |
selected_frame_index = pad_tensor(selected_frame_index, self.max_frames, dim=0) | |
else: | |
batch_index = self._generate_frame_indices(video_num_frames, self.max_num_frames, self.sample_stride, | |
self.skip_frames_start_percent, self.skip_frames_end_percent, | |
self.skip_frames_start, self.skip_frames_end) | |
try: | |
frames = video_reader.get_batch(batch_index) # torch [T, H, W, C] | |
frames = self._short_resize_and_crop(frames, self.width, self.height) # [T, H, W, C] | |
except FunctionTimedOut: | |
raise ValueError(f"Read {idx} timeout.") | |
except Exception as e: | |
raise ValueError(f"Failed to extract frames from video. Error is {e}.") | |
# Apply training transforms in batch | |
frames = frames.float() | |
frames = train_transforms(frames) | |
pixel_values = frames.permute(0, 3, 1, 2).contiguous() # [T, C, H, W] | |
del video_reader | |
# Random use no text generation | |
if random.random() < self.text_drop_ratio: | |
text = '' | |
if self.is_train_face: | |
return pixel_values, text, 'video', video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs | |
else: | |
return pixel_values, text, 'video', video_dir | |
def __len__(self): | |
return self.num_instance_videos | |
def __getitem__(self, idx): | |
sample = {} | |
if self.is_train_face: | |
pixel_values, cap, data_type, video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs = self.get_batch(idx) | |
sample["instance_prompt"] = self.id_token + cap | |
sample["instance_video"] = pixel_values | |
sample["video_path"] = video_dir | |
if self.is_train_face: | |
sample["expand_face_imgs"] = expand_face_imgs | |
sample["dense_masks_tensor"] = dense_masks_tensor | |
sample["selected_frame_index"] = selected_frame_index | |
if reserve_face_imgs is not None: | |
sample["reserve_face_imgs"] = reserve_face_imgs | |
if original_face_imgs is not None: | |
sample["original_face_imgs"] = original_face_imgs | |
else: | |
pixel_values, cap, data_type, video_dir = self.get_batch(idx) | |
sample["instance_prompt"] = self.id_token + cap | |
sample["instance_video"] = pixel_values | |
sample["video_path"] = video_dir | |
return sample | |
# while True: | |
# sample = {} | |
# try: | |
# if self.is_train_face: | |
# pixel_values, cap, data_type, video_dir, expand_face_imgs, dense_masks_tensor, selected_frame_index, reserve_face_imgs, original_face_imgs = self.get_batch(idx) | |
# sample["instance_prompt"] = self.id_token + cap | |
# sample["instance_video"] = pixel_values | |
# sample["video_path"] = video_dir | |
# if self.is_train_face: | |
# sample["expand_face_imgs"] = expand_face_imgs | |
# sample["dense_masks_tensor"] = dense_masks_tensor | |
# sample["selected_frame_index"] = selected_frame_index | |
# if reserve_face_imgs is not None: | |
# sample["reserve_face_imgs"] = reserve_face_imgs | |
# if original_face_imgs is not None: | |
# sample["original_face_imgs"] = original_face_imgs | |
# else: | |
# pixel_values, cap, data_type, video_dir, = self.get_batch(idx) | |
# sample["instance_prompt"] = self.id_token + cap | |
# sample["instance_video"] = pixel_values | |
# sample["video_path"] = video_dir | |
# break | |
# except Exception as e: | |
# error_message = str(e) | |
# video_path = self.instance_video_paths[idx % len(self.instance_video_paths)] | |
# print(error_message, video_path) | |
# log_error_to_file(error_message, video_path) | |
# idx = random.randint(0, self.num_instance_videos - 1) | |
# return sample |