Spaces:
Runtime error
Runtime error
Upload consisid_preview_script_offload.py
Browse files
consisid_preview_script_offload.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
import threading
|
7 |
+
from PIL import Image, ImageOps
|
8 |
+
from moviepy.editor import VideoFileClip
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
11 |
+
|
12 |
+
import insightface
|
13 |
+
from insightface.app import FaceAnalysis
|
14 |
+
from facexlib.parsing import init_parsing_model
|
15 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from diffusers import CogVideoXDPMScheduler
|
19 |
+
from diffusers.utils import load_image
|
20 |
+
from diffusers.image_processor import VaeImageProcessor
|
21 |
+
from diffusers.training_utils import free_memory
|
22 |
+
|
23 |
+
from util.utils import *
|
24 |
+
from util.rife_model import load_rife_model, rife_inference_with_latents
|
25 |
+
from models.utils import process_face_embeddings
|
26 |
+
from models.transformer_consisid import ConsisIDTransformer3DModel
|
27 |
+
from models.pipeline_consisid import ConsisIDPipeline
|
28 |
+
from models.eva_clip import create_model_and_transforms
|
29 |
+
from models.eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
30 |
+
from models.eva_clip.utils_qformer import resize_numpy_image_long
|
31 |
+
|
32 |
+
import argparse
|
33 |
+
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
|
36 |
+
def main():
|
37 |
+
parser = argparse.ArgumentParser(description="ConsisID Command Line Interface")
|
38 |
+
parser.add_argument("image_path", type=str, help="Path to the input image")
|
39 |
+
parser.add_argument("prompt", type=str, help="Prompt text for the generation")
|
40 |
+
parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps")
|
41 |
+
parser.add_argument("--guidance_scale", type=float, default=7.0, help="Guidance scale")
|
42 |
+
parser.add_argument("--seed", type=int, default=42, help="Random seed for generation")
|
43 |
+
parser.add_argument("--output_dir", type=str, default="./output", help="Directory to save the output video")
|
44 |
+
args = parser.parse_args()
|
45 |
+
|
46 |
+
# Download models
|
47 |
+
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
48 |
+
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
49 |
+
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")
|
50 |
+
|
51 |
+
model_path = "BestWishYsh/ConsisID-preview"
|
52 |
+
lora_path = None
|
53 |
+
lora_rank = 128
|
54 |
+
dtype = torch.bfloat16
|
55 |
+
|
56 |
+
if os.path.exists(os.path.join(model_path, "transformer_ema")):
|
57 |
+
subfolder = "transformer_ema"
|
58 |
+
else:
|
59 |
+
subfolder = "transformer"
|
60 |
+
|
61 |
+
transformer = ConsisIDTransformer3DModel.from_pretrained_cus(model_path, subfolder=subfolder)
|
62 |
+
scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler")
|
63 |
+
|
64 |
+
try:
|
65 |
+
is_kps = transformer.config.is_kps
|
66 |
+
except:
|
67 |
+
is_kps = False
|
68 |
+
|
69 |
+
# 1. load face helper models
|
70 |
+
face_helper = FaceRestoreHelper(
|
71 |
+
upscale_factor=1,
|
72 |
+
face_size=512,
|
73 |
+
crop_ratio=(1, 1),
|
74 |
+
det_model='retinaface_resnet50',
|
75 |
+
save_ext='png',
|
76 |
+
device=device,
|
77 |
+
model_rootpath=os.path.join(model_path, "face_encoder")
|
78 |
+
)
|
79 |
+
face_helper.face_parse = None
|
80 |
+
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=os.path.join(model_path, "face_encoder"))
|
81 |
+
face_helper.face_det.eval()
|
82 |
+
face_helper.face_parse.eval()
|
83 |
+
|
84 |
+
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True)
|
85 |
+
face_clip_model = model.visual
|
86 |
+
face_clip_model.eval()
|
87 |
+
|
88 |
+
eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN)
|
89 |
+
eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD)
|
90 |
+
if not isinstance(eva_transform_mean, (list, tuple)):
|
91 |
+
eva_transform_mean = (eva_transform_mean,) * 3
|
92 |
+
if not isinstance(eva_transform_std, (list, tuple)):
|
93 |
+
eva_transform_std = (eva_transform_std,) * 3
|
94 |
+
eva_transform_mean = eva_transform_mean
|
95 |
+
eva_transform_std = eva_transform_std
|
96 |
+
|
97 |
+
face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider'])
|
98 |
+
handler_ante = insightface.model_zoo.get_model(f'{model_path}/face_encoder/models/antelopev2/glintr100.onnx', providers=['CUDAExecutionProvider'])
|
99 |
+
face_main_model.prepare(ctx_id=0, det_size=(640, 640))
|
100 |
+
handler_ante.prepare(ctx_id=0)
|
101 |
+
|
102 |
+
face_clip_model.to(device, dtype=dtype)
|
103 |
+
face_helper.face_det.to(device)
|
104 |
+
face_helper.face_parse.to(device)
|
105 |
+
transformer.to(device, dtype=dtype)
|
106 |
+
free_memory()
|
107 |
+
|
108 |
+
pipe = ConsisIDPipeline.from_pretrained(model_path, transformer=transformer, scheduler=scheduler, torch_dtype=dtype)
|
109 |
+
# If you're using with lora, add this code
|
110 |
+
if lora_path:
|
111 |
+
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
|
112 |
+
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
113 |
+
|
114 |
+
scheduler_args = {}
|
115 |
+
if "variance_type" in pipe.scheduler.config:
|
116 |
+
variance_type = pipe.scheduler.config.variance_type
|
117 |
+
if variance_type in ["learned", "learned_range"]:
|
118 |
+
variance_type = "fixed_small"
|
119 |
+
scheduler_args["variance_type"] = variance_type
|
120 |
+
|
121 |
+
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
|
122 |
+
#pipe.to(device)
|
123 |
+
|
124 |
+
pipe.enable_model_cpu_offload()
|
125 |
+
pipe.enable_sequential_cpu_offload()
|
126 |
+
pipe.vae.enable_slicing()
|
127 |
+
pipe.vae.enable_tiling()
|
128 |
+
|
129 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
130 |
+
|
131 |
+
upscale_model = load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
|
132 |
+
frame_interpolation_model = load_rife_model("model_rife")
|
133 |
+
|
134 |
+
def infer(
|
135 |
+
prompt: str,
|
136 |
+
image_input: str,
|
137 |
+
num_inference_steps: int,
|
138 |
+
guidance_scale: float,
|
139 |
+
seed: int = 42,
|
140 |
+
):
|
141 |
+
if seed == -1:
|
142 |
+
seed = random.randint(0, 2**8 - 1)
|
143 |
+
|
144 |
+
id_image = np.array(ImageOps.exif_transpose(Image.open(image_input)).convert("RGB"))
|
145 |
+
id_image = resize_numpy_image_long(id_image, 1024)
|
146 |
+
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante,
|
147 |
+
eva_transform_mean, eva_transform_std,
|
148 |
+
face_main_model, device, dtype, id_image,
|
149 |
+
original_id_image=id_image, is_align_face=True,
|
150 |
+
cal_uncond=False)
|
151 |
+
|
152 |
+
if is_kps:
|
153 |
+
kps_cond = face_kps
|
154 |
+
else:
|
155 |
+
kps_cond = None
|
156 |
+
|
157 |
+
tensor = align_crop_face_image.cpu().detach()
|
158 |
+
tensor = tensor.squeeze()
|
159 |
+
tensor = tensor.permute(1, 2, 0)
|
160 |
+
tensor = tensor.numpy() * 255
|
161 |
+
tensor = tensor.astype(np.uint8)
|
162 |
+
image = ImageOps.exif_transpose(Image.fromarray(tensor))
|
163 |
+
|
164 |
+
prompt = prompt.strip('"')
|
165 |
+
|
166 |
+
generator = torch.Generator(device).manual_seed(seed) if seed else None
|
167 |
+
|
168 |
+
video_pt = pipe(
|
169 |
+
prompt=prompt,
|
170 |
+
image=image,
|
171 |
+
num_videos_per_prompt=1,
|
172 |
+
num_inference_steps=num_inference_steps,
|
173 |
+
num_frames=49,
|
174 |
+
use_dynamic_cfg=False,
|
175 |
+
guidance_scale=guidance_scale,
|
176 |
+
generator=generator,
|
177 |
+
id_vit_hidden=id_vit_hidden,
|
178 |
+
id_cond=id_cond,
|
179 |
+
kps_cond=kps_cond,
|
180 |
+
output_type="pt",
|
181 |
+
).frames
|
182 |
+
|
183 |
+
free_memory()
|
184 |
+
return (video_pt, seed)
|
185 |
+
|
186 |
+
def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8, output_dir = "output"):
|
187 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
188 |
+
video_path = f"./{output_dir}/{timestamp}.mp4"
|
189 |
+
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
190 |
+
export_to_video(tensor, video_path, fps=fps)
|
191 |
+
return video_path
|
192 |
+
|
193 |
+
def convert_to_gif(video_path):
|
194 |
+
clip = VideoFileClip(video_path)
|
195 |
+
gif_path = video_path.replace(".mp4", ".gif")
|
196 |
+
clip.write_gif(gif_path, fps=8)
|
197 |
+
return gif_path
|
198 |
+
|
199 |
+
def delete_old_files():
|
200 |
+
while True:
|
201 |
+
now = datetime.now()
|
202 |
+
cutoff = now - timedelta(minutes=10)
|
203 |
+
directories = [args.output_dir]
|
204 |
+
|
205 |
+
for directory in directories:
|
206 |
+
for filename in os.listdir(directory):
|
207 |
+
file_path = os.path.join(directory, filename)
|
208 |
+
if os.path.isfile(file_path):
|
209 |
+
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
|
210 |
+
if file_mtime < cutoff:
|
211 |
+
os.remove(file_path)
|
212 |
+
time.sleep(600)
|
213 |
+
|
214 |
+
threading.Thread(target=delete_old_files, daemon=True).start()
|
215 |
+
|
216 |
+
latents, seed = infer(
|
217 |
+
args.prompt,
|
218 |
+
args.image_path,
|
219 |
+
num_inference_steps=args.num_inference_steps,
|
220 |
+
guidance_scale=args.guidance_scale,
|
221 |
+
seed=args.seed,
|
222 |
+
)
|
223 |
+
|
224 |
+
batch_size = latents.shape[0]
|
225 |
+
batch_video_frames = []
|
226 |
+
for batch_idx in range(batch_size):
|
227 |
+
pt_image = latents[batch_idx]
|
228 |
+
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
|
229 |
+
|
230 |
+
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
|
231 |
+
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
|
232 |
+
batch_video_frames.append(image_pil)
|
233 |
+
|
234 |
+
video_path = save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6), output_dir=args.output_dir)
|
235 |
+
gif_path = convert_to_gif(video_path)
|
236 |
+
|
237 |
+
print(f"Video saved to: {video_path}")
|
238 |
+
print(f"GIF saved to: {gif_path}")
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
main()
|