init
Browse files- .gitattributes +1 -0
- .gitignore +142 -0
- LICENSE +201 -0
- app.py +372 -0
- dreamo/dreamo_pipeline.py +466 -0
- dreamo/transformer.py +187 -0
- dreamo/utils.py +222 -0
- example_inputs/cat.png +3 -0
- example_inputs/dog1.png +3 -0
- example_inputs/dog2.png +3 -0
- example_inputs/dress.png +3 -0
- example_inputs/hinton.jpeg +3 -0
- example_inputs/man1.png +3 -0
- example_inputs/man2.jpeg +3 -0
- example_inputs/mickey.png +3 -0
- example_inputs/mountain.png +3 -0
- example_inputs/perfume.png +3 -0
- example_inputs/shirt.png +3 -0
- example_inputs/skirt.jpeg +3 -0
- example_inputs/toy1.png +3 -0
- example_inputs/woman1.png +3 -0
- example_inputs/woman2.png +3 -0
- example_inputs/woman3.png +3 -0
- example_inputs/woman4.jpeg +3 -0
- models/.gitkeep +0 -0
- pyproject.toml +29 -0
- requirements.txt +12 -0
- tools/BEN2.py +1359 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
example_inputs/* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets/*
|
2 |
+
experiments/*
|
3 |
+
results/*
|
4 |
+
tb_logger/*
|
5 |
+
wandb/*
|
6 |
+
tmp/*
|
7 |
+
weights/*
|
8 |
+
inputs/*
|
9 |
+
|
10 |
+
*.DS_Store
|
11 |
+
|
12 |
+
# Byte-compiled / optimized / DLL files
|
13 |
+
__pycache__/
|
14 |
+
*.py[cod]
|
15 |
+
*$py.class
|
16 |
+
|
17 |
+
# C extensions
|
18 |
+
*.so
|
19 |
+
|
20 |
+
# Distribution / packaging
|
21 |
+
.Python
|
22 |
+
build/
|
23 |
+
develop-eggs/
|
24 |
+
dist/
|
25 |
+
downloads/
|
26 |
+
eggs/
|
27 |
+
.eggs/
|
28 |
+
lib/
|
29 |
+
lib64/
|
30 |
+
parts/
|
31 |
+
sdist/
|
32 |
+
var/
|
33 |
+
wheels/
|
34 |
+
pip-wheel-metadata/
|
35 |
+
share/python-wheels/
|
36 |
+
*.egg-info/
|
37 |
+
.installed.cfg
|
38 |
+
*.egg
|
39 |
+
MANIFEST
|
40 |
+
|
41 |
+
# PyInstaller
|
42 |
+
# Usually these files are written by a python script from a template
|
43 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
44 |
+
*.manifest
|
45 |
+
*.spec
|
46 |
+
|
47 |
+
# Installer logs
|
48 |
+
pip-log.txt
|
49 |
+
pip-delete-this-directory.txt
|
50 |
+
|
51 |
+
# Unit test / coverage reports
|
52 |
+
htmlcov/
|
53 |
+
.tox/
|
54 |
+
.nox/
|
55 |
+
.coverage
|
56 |
+
.coverage.*
|
57 |
+
.cache
|
58 |
+
nosetests.xml
|
59 |
+
coverage.xml
|
60 |
+
*.cover
|
61 |
+
*.py,cover
|
62 |
+
.hypothesis/
|
63 |
+
.pytest_cache/
|
64 |
+
|
65 |
+
# Translations
|
66 |
+
*.mo
|
67 |
+
*.pot
|
68 |
+
|
69 |
+
# Django stuff:
|
70 |
+
*.log
|
71 |
+
local_settings.py
|
72 |
+
db.sqlite3
|
73 |
+
db.sqlite3-journal
|
74 |
+
|
75 |
+
# Flask stuff:
|
76 |
+
instance/
|
77 |
+
.webassets-cache
|
78 |
+
|
79 |
+
# Scrapy stuff:
|
80 |
+
.scrapy
|
81 |
+
|
82 |
+
# Sphinx documentation
|
83 |
+
docs/_build/
|
84 |
+
|
85 |
+
# PyBuilder
|
86 |
+
target/
|
87 |
+
|
88 |
+
# Jupyter Notebook
|
89 |
+
.ipynb_checkpoints
|
90 |
+
|
91 |
+
# IPython
|
92 |
+
profile_default/
|
93 |
+
ipython_config.py
|
94 |
+
|
95 |
+
# pyenv
|
96 |
+
.python-version
|
97 |
+
|
98 |
+
# pipenv
|
99 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
100 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
101 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
102 |
+
# install all needed dependencies.
|
103 |
+
#Pipfile.lock
|
104 |
+
|
105 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
106 |
+
__pypackages__/
|
107 |
+
|
108 |
+
# Celery stuff
|
109 |
+
celerybeat-schedule
|
110 |
+
celerybeat.pid
|
111 |
+
|
112 |
+
# SageMath parsed files
|
113 |
+
*.sage.py
|
114 |
+
|
115 |
+
# Environments
|
116 |
+
.env
|
117 |
+
.venv
|
118 |
+
env/
|
119 |
+
venv/
|
120 |
+
ENV/
|
121 |
+
env.bak/
|
122 |
+
venv.bak/
|
123 |
+
|
124 |
+
# Spyder project settings
|
125 |
+
.spyderproject
|
126 |
+
.spyproject
|
127 |
+
|
128 |
+
# Rope project settings
|
129 |
+
.ropeproject
|
130 |
+
|
131 |
+
# mkdocs documentation
|
132 |
+
/site
|
133 |
+
|
134 |
+
# mypy
|
135 |
+
.mypy_cache/
|
136 |
+
.dmypy.json
|
137 |
+
dmypy.json
|
138 |
+
|
139 |
+
# Pyre type checker
|
140 |
+
.pyre/
|
141 |
+
|
142 |
+
.idea/
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
app.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import spaces
|
16 |
+
import argparse
|
17 |
+
|
18 |
+
import os
|
19 |
+
import cv2
|
20 |
+
import gradio as gr
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
24 |
+
import huggingface_hub
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
from torchvision.transforms.functional import normalize
|
28 |
+
|
29 |
+
from dreamo.dreamo_pipeline import DreamOPipeline
|
30 |
+
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img
|
31 |
+
from tools import BEN2
|
32 |
+
|
33 |
+
parser = argparse.ArgumentParser()
|
34 |
+
parser.add_argument('--port', type=int, default=8080)
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
huggingface_hub.login(os.getenv('HF_TOKEN'))
|
38 |
+
|
39 |
+
|
40 |
+
class Generator:
|
41 |
+
def __init__(self):
|
42 |
+
device = torch.device('cuda')
|
43 |
+
# preprocessing models
|
44 |
+
# background remove model: BEN2
|
45 |
+
self.bg_rm_model = BEN2.BEN_Base().to(device).eval()
|
46 |
+
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
|
47 |
+
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
|
48 |
+
# face crop and align tool: facexlib
|
49 |
+
self.face_helper = FaceRestoreHelper(
|
50 |
+
upscale_factor=1,
|
51 |
+
face_size=512,
|
52 |
+
crop_ratio=(1, 1),
|
53 |
+
det_model='retinaface_resnet50',
|
54 |
+
save_ext='png',
|
55 |
+
device=device,
|
56 |
+
)
|
57 |
+
|
58 |
+
# load dreamo
|
59 |
+
model_root = 'black-forest-labs/FLUX.1-dev'
|
60 |
+
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
|
61 |
+
dreamo_pipeline.load_dreamo_model(device, use_turbo=True)
|
62 |
+
self.dreamo_pipeline = dreamo_pipeline.to(device)
|
63 |
+
|
64 |
+
@torch.no_grad()
|
65 |
+
def get_align_face(self, img):
|
66 |
+
# the face preprocessing code is same as PuLID
|
67 |
+
self.face_helper.clean_all()
|
68 |
+
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
69 |
+
self.face_helper.read_image(image_bgr)
|
70 |
+
self.face_helper.get_face_landmarks_5(only_center_face=True)
|
71 |
+
self.face_helper.align_warp_face()
|
72 |
+
if len(self.face_helper.cropped_faces) == 0:
|
73 |
+
return None
|
74 |
+
align_face = self.face_helper.cropped_faces[0]
|
75 |
+
|
76 |
+
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
|
77 |
+
input = input.to(torch.device("cuda"))
|
78 |
+
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
79 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
80 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
81 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
82 |
+
white_image = torch.ones_like(input)
|
83 |
+
# only keep the face features
|
84 |
+
face_features_image = torch.where(bg, white_image, input)
|
85 |
+
face_features_image = tensor2img(face_features_image, rgb2bgr=False)
|
86 |
+
|
87 |
+
return face_features_image
|
88 |
+
|
89 |
+
|
90 |
+
generator = Generator()
|
91 |
+
|
92 |
+
|
93 |
+
@spaces.GPU
|
94 |
+
@torch.inference_mode()
|
95 |
+
def generate_image(
|
96 |
+
ref_image1,
|
97 |
+
ref_image2,
|
98 |
+
ref_task1,
|
99 |
+
ref_task2,
|
100 |
+
prompt,
|
101 |
+
width,
|
102 |
+
height,
|
103 |
+
ref_res,
|
104 |
+
num_steps,
|
105 |
+
guidance,
|
106 |
+
seed,
|
107 |
+
true_cfg,
|
108 |
+
cfg_start_step,
|
109 |
+
cfg_end_step,
|
110 |
+
neg_prompt,
|
111 |
+
neg_guidance,
|
112 |
+
first_step_guidance,
|
113 |
+
):
|
114 |
+
print(prompt)
|
115 |
+
ref_conds = []
|
116 |
+
debug_images = []
|
117 |
+
|
118 |
+
ref_images = [ref_image1, ref_image2]
|
119 |
+
ref_tasks = [ref_task1, ref_task2]
|
120 |
+
|
121 |
+
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
|
122 |
+
if ref_image is not None:
|
123 |
+
if ref_task == "id":
|
124 |
+
ref_image = generator.get_align_face(ref_image)
|
125 |
+
elif ref_task != "style":
|
126 |
+
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
|
127 |
+
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
|
128 |
+
debug_images.append(ref_image)
|
129 |
+
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
|
130 |
+
ref_image = 2 * ref_image - 1.0
|
131 |
+
ref_conds.append(
|
132 |
+
{
|
133 |
+
'img': ref_image,
|
134 |
+
'task': ref_task,
|
135 |
+
'idx': idx + 1,
|
136 |
+
}
|
137 |
+
)
|
138 |
+
|
139 |
+
seed = int(seed)
|
140 |
+
if seed == -1:
|
141 |
+
seed = torch.Generator(device="cpu").seed()
|
142 |
+
|
143 |
+
image = generator.dreamo_pipeline(
|
144 |
+
prompt=prompt,
|
145 |
+
width=width,
|
146 |
+
height=height,
|
147 |
+
num_inference_steps=num_steps,
|
148 |
+
guidance_scale=guidance,
|
149 |
+
ref_conds=ref_conds,
|
150 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
151 |
+
true_cfg_scale=true_cfg,
|
152 |
+
true_cfg_start_step=cfg_start_step,
|
153 |
+
true_cfg_end_step=cfg_end_step,
|
154 |
+
negative_prompt=neg_prompt,
|
155 |
+
neg_guidance_scale=neg_guidance,
|
156 |
+
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance,
|
157 |
+
).images[0]
|
158 |
+
|
159 |
+
return image, debug_images, seed
|
160 |
+
|
161 |
+
|
162 |
+
_HEADER_ = '''
|
163 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
164 |
+
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">DreamO</h1>
|
165 |
+
<p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2504.16915' target='_blank'>DreamO: A Unified Framework for Image Customization</a> | Codes: <a href='https://github.com/bytedance/DreamO' target='_blank'>GitHub</a></p>
|
166 |
+
</div>
|
167 |
+
|
168 |
+
❗️❗️❗️**User Guide:**
|
169 |
+
- The most important thing to do first is to try the examples provided below the demo, which will help you better understand the capabilities of the DreamO model and the types of tasks it currently supports
|
170 |
+
- For each input, please select the appropriate task type. For general objects, characters, or clothing, choose IP — we will remove the background from the input image. If you select ID, we will extract the face region from the input image (similar to PuLID). If you select Style, the background will be preserved, and you must prepend the prompt with the instruction: 'generate a same style image.' to activate the style task.
|
171 |
+
- To accelerate inference, we adopt FLUX-turbo LoRA, which reduces the sampling steps from 25 to 12 compared to FLUX-dev. Additionally, we distill a CFG LoRA, achieving nearly a twofold reduction in steps by eliminating the need for true CFG
|
172 |
+
|
173 |
+
''' # noqa E501
|
174 |
+
|
175 |
+
_CITE_ = r"""
|
176 |
+
If DreamO is helpful, please help to ⭐ the <a href='https://github.com/bytedance/DreamO' target='_blank'> Github Repo</a>. Thanks!
|
177 |
+
---
|
178 |
+
|
179 |
+
📧 **Contact**
|
180 |
+
If you have any questions or feedbacks, feel free to open a discussion or contact <b>[email protected]</b> and <b>[email protected]</b>
|
181 |
+
""" # noqa E501
|
182 |
+
|
183 |
+
|
184 |
+
def create_demo():
|
185 |
+
|
186 |
+
with gr.Blocks() as demo:
|
187 |
+
gr.Markdown(_HEADER_)
|
188 |
+
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column():
|
191 |
+
with gr.Row():
|
192 |
+
ref_image1 = gr.Image(label="ref image 1", type="numpy", height=256)
|
193 |
+
ref_image2 = gr.Image(label="ref image 2", type="numpy", height=256)
|
194 |
+
with gr.Row():
|
195 |
+
ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 1")
|
196 |
+
ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 2")
|
197 |
+
prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street")
|
198 |
+
width = gr.Slider(768, 1024, 1024, step=16, label="Width")
|
199 |
+
height = gr.Slider(768, 1024, 1024, step=16, label="Height")
|
200 |
+
num_steps = gr.Slider(8, 30, 12, step=1, label="Number of steps")
|
201 |
+
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance")
|
202 |
+
seed = gr.Textbox(-1, label="Seed (-1 for random)")
|
203 |
+
with gr.Accordion("Advanced Options", open=False, visible=False):
|
204 |
+
ref_res = gr.Slider(512, 1024, 512, step=16, label="resolution for ref image")
|
205 |
+
neg_prompt = gr.Textbox(label="Neg Prompt", value="")
|
206 |
+
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Neg Guidance")
|
207 |
+
true_cfg = gr.Slider(1, 5, 1, step=0.1, label="true cfg")
|
208 |
+
cfg_start_step = gr.Slider(0, 30, 0, step=1, label="cfg start step")
|
209 |
+
cfg_end_step = gr.Slider(0, 30, 0, step=1, label="cfg end step")
|
210 |
+
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="first step guidance")
|
211 |
+
generate_btn = gr.Button("Generate")
|
212 |
+
gr.Markdown(_CITE_)
|
213 |
+
|
214 |
+
with gr.Column():
|
215 |
+
output_image = gr.Image(label="Generated Image", format='png')
|
216 |
+
debug_image = gr.Gallery(
|
217 |
+
label="Preprocessing output (including possible face crop and background remove)",
|
218 |
+
elem_id="gallery",
|
219 |
+
)
|
220 |
+
seed_output = gr.Textbox(label="Used Seed")
|
221 |
+
|
222 |
+
with gr.Row(), gr.Column():
|
223 |
+
gr.Markdown("## Examples")
|
224 |
+
example_inps = [
|
225 |
+
[
|
226 |
+
'example_inputs/woman1.png',
|
227 |
+
'ip',
|
228 |
+
'profile shot dark photo of a 25-year-old female with smoke escaping from her mouth, the backlit smoke gives the image an ephemeral quality, natural face, natural eyebrows, natural skin texture, award winning photo, highly detailed face, atmospheric lighting, film grain, monochrome', # noqa E501
|
229 |
+
9180879731249039735,
|
230 |
+
],
|
231 |
+
[
|
232 |
+
'example_inputs/man1.png',
|
233 |
+
'ip',
|
234 |
+
'a man sitting on the cloud, playing guitar',
|
235 |
+
1206523688721442817,
|
236 |
+
],
|
237 |
+
[
|
238 |
+
'example_inputs/toy1.png',
|
239 |
+
'ip',
|
240 |
+
'a purple toy holding a sign saying "DreamO", on the mountain',
|
241 |
+
1563188099017016129,
|
242 |
+
],
|
243 |
+
[
|
244 |
+
'example_inputs/perfume.png',
|
245 |
+
'ip',
|
246 |
+
'a perfume under spotlight',
|
247 |
+
116150031980664704,
|
248 |
+
],
|
249 |
+
]
|
250 |
+
gr.Examples(examples=example_inps, inputs=[ref_image1, ref_task1, prompt, seed], label='IP task', cache_examples='lazy')
|
251 |
+
|
252 |
+
example_inps = [
|
253 |
+
[
|
254 |
+
'example_inputs/hinton.jpeg',
|
255 |
+
None,
|
256 |
+
'id',
|
257 |
+
'ip',
|
258 |
+
'portrait, Chibi',
|
259 |
+
5443415087540486371,
|
260 |
+
],
|
261 |
+
]
|
262 |
+
gr.Examples(
|
263 |
+
examples=example_inps,
|
264 |
+
inputs=[ref_image1, ref_task1, prompt, seed],
|
265 |
+
label='ID task (similar to PuLID, will only refer to the face)',
|
266 |
+
cache_examples='lazy',
|
267 |
+
)
|
268 |
+
|
269 |
+
example_inps = [
|
270 |
+
[
|
271 |
+
'example_inputs/mickey.png',
|
272 |
+
'style',
|
273 |
+
'generate a same style image. A rooster wearing overalls.',
|
274 |
+
6245580464677124951,
|
275 |
+
],
|
276 |
+
[
|
277 |
+
'example_inputs/mountain.png',
|
278 |
+
'style',
|
279 |
+
'generate a same style image. A pavilion by the river, and the distant mountains are endless',
|
280 |
+
5248066378927500767,
|
281 |
+
],
|
282 |
+
]
|
283 |
+
gr.Examples(examples=example_inps, inputs=[ref_image1, ref_task1, prompt, seed], label='Style task', cache_examples='lazy')
|
284 |
+
|
285 |
+
example_inps = [
|
286 |
+
[
|
287 |
+
'example_inputs/shirt.png',
|
288 |
+
'example_inputs/skirt.jpeg',
|
289 |
+
'ip',
|
290 |
+
'ip',
|
291 |
+
'A girl is wearing a short-sleeved shirt and a short skirt on the beach.',
|
292 |
+
9514069256241143615,
|
293 |
+
],
|
294 |
+
[
|
295 |
+
'example_inputs/woman2.png',
|
296 |
+
'example_inputs/dress.png',
|
297 |
+
'id',
|
298 |
+
'ip',
|
299 |
+
'the woman wearing a dress, In the banquet hall',
|
300 |
+
7698454872441022867,
|
301 |
+
],
|
302 |
+
]
|
303 |
+
gr.Examples(
|
304 |
+
examples=example_inps,
|
305 |
+
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed],
|
306 |
+
label='Try-On task',
|
307 |
+
cache_examples='lazy',
|
308 |
+
)
|
309 |
+
|
310 |
+
example_inps = [
|
311 |
+
[
|
312 |
+
'example_inputs/dog1.png',
|
313 |
+
'example_inputs/dog2.png',
|
314 |
+
'ip',
|
315 |
+
'ip',
|
316 |
+
'two dogs in the jungle',
|
317 |
+
3356402871128791851,
|
318 |
+
],
|
319 |
+
[
|
320 |
+
'example_inputs/woman3.png',
|
321 |
+
'example_inputs/cat.png',
|
322 |
+
'ip',
|
323 |
+
'ip',
|
324 |
+
'A girl rides a giant cat, walking in the noisy modern city. High definition, realistic, non-cartoonish. Excellent photography work, 8k high definition.', # noqa E501
|
325 |
+
11980469406460273604,
|
326 |
+
],
|
327 |
+
[
|
328 |
+
'example_inputs/man2.jpeg',
|
329 |
+
'example_inputs/woman4.jpeg',
|
330 |
+
'ip',
|
331 |
+
'ip',
|
332 |
+
'a man is dancing with a woman in the room',
|
333 |
+
8303780338601106219,
|
334 |
+
],
|
335 |
+
]
|
336 |
+
gr.Examples(
|
337 |
+
examples=example_inps,
|
338 |
+
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed],
|
339 |
+
label='Multi IP',
|
340 |
+
cache_examples='lazy',
|
341 |
+
)
|
342 |
+
|
343 |
+
generate_btn.click(
|
344 |
+
fn=generate_image,
|
345 |
+
inputs=[
|
346 |
+
ref_image1,
|
347 |
+
ref_image2,
|
348 |
+
ref_task1,
|
349 |
+
ref_task2,
|
350 |
+
prompt,
|
351 |
+
width,
|
352 |
+
height,
|
353 |
+
ref_res,
|
354 |
+
num_steps,
|
355 |
+
guidance,
|
356 |
+
seed,
|
357 |
+
true_cfg,
|
358 |
+
cfg_start_step,
|
359 |
+
cfg_end_step,
|
360 |
+
neg_prompt,
|
361 |
+
neg_guidance,
|
362 |
+
first_step_guidance,
|
363 |
+
],
|
364 |
+
outputs=[output_image, debug_image, seed_output],
|
365 |
+
)
|
366 |
+
|
367 |
+
return demo
|
368 |
+
|
369 |
+
|
370 |
+
if __name__ == '__main__':
|
371 |
+
demo = create_demo()
|
372 |
+
demo.queue().launch(server_name='0.0.0.0', server_port=args.port)
|
dreamo/dreamo_pipeline.py
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import diffusers
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from diffusers import FluxPipeline
|
23 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
24 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
25 |
+
from einops import repeat
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
from safetensors.torch import load_file
|
28 |
+
|
29 |
+
from dreamo.transformer import flux_transformer_forward
|
30 |
+
from dreamo.utils import convert_flux_lora_to_diffusers
|
31 |
+
|
32 |
+
diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.forward = flux_transformer_forward
|
33 |
+
|
34 |
+
|
35 |
+
def get_task_embedding_idx(task):
|
36 |
+
return 0
|
37 |
+
|
38 |
+
|
39 |
+
class DreamOPipeline(FluxPipeline):
|
40 |
+
def __init__(self, scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer):
|
41 |
+
super().__init__(scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer)
|
42 |
+
self.t5_embedding = nn.Embedding(10, 4096)
|
43 |
+
self.task_embedding = nn.Embedding(2, 3072)
|
44 |
+
self.idx_embedding = nn.Embedding(10, 3072)
|
45 |
+
|
46 |
+
def load_dreamo_model(self, device, use_turbo=True):
|
47 |
+
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo.safetensors', local_dir='models')
|
48 |
+
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_cfg_distill.safetensors', local_dir='models')
|
49 |
+
dreamo_lora = load_file('models/dreamo.safetensors')
|
50 |
+
cfg_distill_lora = load_file('models/dreamo_cfg_distill.safetensors')
|
51 |
+
self.t5_embedding.weight.data = dreamo_lora.pop('dreamo_t5_embedding.weight')[-10:]
|
52 |
+
self.task_embedding.weight.data = dreamo_lora.pop('dreamo_task_embedding.weight')
|
53 |
+
self.idx_embedding.weight.data = dreamo_lora.pop('dreamo_idx_embedding.weight')
|
54 |
+
self._prepare_t5()
|
55 |
+
|
56 |
+
dreamo_diffuser_lora = convert_flux_lora_to_diffusers(dreamo_lora)
|
57 |
+
cfg_diffuser_lora = convert_flux_lora_to_diffusers(cfg_distill_lora)
|
58 |
+
adapter_names = ['dreamo']
|
59 |
+
adapter_weights = [1]
|
60 |
+
self.load_lora_weights(dreamo_diffuser_lora, adapter_name='dreamo')
|
61 |
+
if cfg_diffuser_lora is not None:
|
62 |
+
self.load_lora_weights(cfg_diffuser_lora, adapter_name='cfg')
|
63 |
+
adapter_names.append('cfg')
|
64 |
+
adapter_weights.append(1)
|
65 |
+
if use_turbo:
|
66 |
+
self.load_lora_weights(
|
67 |
+
hf_hub_download(
|
68 |
+
"alimama-creative/FLUX.1-Turbo-Alpha", "diffusion_pytorch_model.safetensors", local_dir='models'
|
69 |
+
),
|
70 |
+
adapter_name='turbo',
|
71 |
+
)
|
72 |
+
adapter_names.append('turbo')
|
73 |
+
adapter_weights.append(1)
|
74 |
+
|
75 |
+
self.fuse_lora(adapter_names=adapter_names, adapter_weights=adapter_weights, lora_scale=1)
|
76 |
+
|
77 |
+
self.t5_embedding = self.t5_embedding.to(device)
|
78 |
+
self.task_embedding = self.task_embedding.to(device)
|
79 |
+
self.idx_embedding = self.idx_embedding.to(device)
|
80 |
+
|
81 |
+
def _prepare_t5(self):
|
82 |
+
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2))
|
83 |
+
num_new_token = 10
|
84 |
+
new_token_list = [f"[ref#{i}]" for i in range(1, 10)] + ["[res]"]
|
85 |
+
self.tokenizer_2.add_tokens(new_token_list, special_tokens=False)
|
86 |
+
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2))
|
87 |
+
input_embedding = self.text_encoder_2.get_input_embeddings().weight.data
|
88 |
+
input_embedding[-num_new_token:] = self.t5_embedding.weight.data
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0):
|
92 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
93 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + start_height
|
94 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + start_width
|
95 |
+
|
96 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
97 |
+
|
98 |
+
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
99 |
+
latent_image_ids = latent_image_ids.reshape(
|
100 |
+
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
101 |
+
)
|
102 |
+
|
103 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def _prepare_style_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0):
|
107 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
108 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + start_height
|
109 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + start_width
|
110 |
+
|
111 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
112 |
+
|
113 |
+
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
114 |
+
latent_image_ids = latent_image_ids.reshape(
|
115 |
+
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
116 |
+
)
|
117 |
+
|
118 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
119 |
+
|
120 |
+
@torch.no_grad()
|
121 |
+
def __call__(
|
122 |
+
self,
|
123 |
+
prompt: Union[str, List[str]] = None,
|
124 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
125 |
+
negative_prompt: Union[str, List[str]] = None,
|
126 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
127 |
+
true_cfg_scale: float = 1.0,
|
128 |
+
true_cfg_start_step: int = 1,
|
129 |
+
true_cfg_end_step: int = 1,
|
130 |
+
height: Optional[int] = None,
|
131 |
+
width: Optional[int] = None,
|
132 |
+
num_inference_steps: int = 28,
|
133 |
+
sigmas: Optional[List[float]] = None,
|
134 |
+
guidance_scale: float = 3.5,
|
135 |
+
neg_guidance_scale: float = 3.5,
|
136 |
+
num_images_per_prompt: Optional[int] = 1,
|
137 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
138 |
+
latents: Optional[torch.FloatTensor] = None,
|
139 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
140 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
141 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
142 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
143 |
+
output_type: Optional[str] = "pil",
|
144 |
+
return_dict: bool = True,
|
145 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
146 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
147 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
148 |
+
max_sequence_length: int = 512,
|
149 |
+
ref_conds=None,
|
150 |
+
first_step_guidance_scale=3.5,
|
151 |
+
):
|
152 |
+
r"""
|
153 |
+
Function invoked when calling the pipeline for generation.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
prompt (`str` or `List[str]`, *optional*):
|
157 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
158 |
+
instead.
|
159 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
160 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
161 |
+
will be used instead.
|
162 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
163 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
164 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
165 |
+
not greater than `1`).
|
166 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
167 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
168 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
169 |
+
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
170 |
+
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
171 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
172 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
173 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
174 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
175 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
176 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
177 |
+
expense of slower inference.
|
178 |
+
sigmas (`List[float]`, *optional*):
|
179 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
180 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
181 |
+
will be used.
|
182 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
183 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
184 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
185 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
186 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
187 |
+
usually at the expense of lower image quality.
|
188 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
189 |
+
The number of images to generate per prompt.
|
190 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
191 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
192 |
+
to make generation deterministic.
|
193 |
+
latents (`torch.FloatTensor`, *optional*):
|
194 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
195 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
196 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
197 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
198 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
199 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
200 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
201 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
202 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
203 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
204 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
205 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
206 |
+
argument.
|
207 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
208 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
209 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
210 |
+
input argument.
|
211 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
212 |
+
The output format of the generate image. Choose between
|
213 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
214 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
215 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
216 |
+
joint_attention_kwargs (`dict`, *optional*):
|
217 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
218 |
+
`self.processor` in
|
219 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
220 |
+
callback_on_step_end (`Callable`, *optional*):
|
221 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
222 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
223 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
224 |
+
`callback_on_step_end_tensor_inputs`.
|
225 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
226 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
227 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
228 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
229 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
230 |
+
|
231 |
+
Examples:
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
235 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
236 |
+
images.
|
237 |
+
"""
|
238 |
+
|
239 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
240 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
241 |
+
|
242 |
+
# 1. Check inputs. Raise error if not correct
|
243 |
+
self.check_inputs(
|
244 |
+
prompt,
|
245 |
+
prompt_2,
|
246 |
+
height,
|
247 |
+
width,
|
248 |
+
prompt_embeds=prompt_embeds,
|
249 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
250 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
251 |
+
max_sequence_length=max_sequence_length,
|
252 |
+
)
|
253 |
+
|
254 |
+
self._guidance_scale = guidance_scale
|
255 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
256 |
+
self._current_timestep = None
|
257 |
+
self._interrupt = False
|
258 |
+
|
259 |
+
# 2. Define call parameters
|
260 |
+
if prompt is not None and isinstance(prompt, str):
|
261 |
+
batch_size = 1
|
262 |
+
elif prompt is not None and isinstance(prompt, list):
|
263 |
+
batch_size = len(prompt)
|
264 |
+
else:
|
265 |
+
batch_size = prompt_embeds.shape[0]
|
266 |
+
|
267 |
+
device = self._execution_device
|
268 |
+
|
269 |
+
lora_scale = (
|
270 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
271 |
+
)
|
272 |
+
has_neg_prompt = negative_prompt is not None or (
|
273 |
+
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
|
274 |
+
)
|
275 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
276 |
+
(
|
277 |
+
prompt_embeds,
|
278 |
+
pooled_prompt_embeds,
|
279 |
+
text_ids,
|
280 |
+
) = self.encode_prompt(
|
281 |
+
prompt=prompt,
|
282 |
+
prompt_2=prompt_2,
|
283 |
+
prompt_embeds=prompt_embeds,
|
284 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
285 |
+
device=device,
|
286 |
+
num_images_per_prompt=num_images_per_prompt,
|
287 |
+
max_sequence_length=max_sequence_length,
|
288 |
+
lora_scale=lora_scale,
|
289 |
+
)
|
290 |
+
if do_true_cfg:
|
291 |
+
(
|
292 |
+
negative_prompt_embeds,
|
293 |
+
negative_pooled_prompt_embeds,
|
294 |
+
_,
|
295 |
+
) = self.encode_prompt(
|
296 |
+
prompt=negative_prompt,
|
297 |
+
prompt_2=negative_prompt_2,
|
298 |
+
prompt_embeds=negative_prompt_embeds,
|
299 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
300 |
+
device=device,
|
301 |
+
num_images_per_prompt=num_images_per_prompt,
|
302 |
+
max_sequence_length=max_sequence_length,
|
303 |
+
lora_scale=lora_scale,
|
304 |
+
)
|
305 |
+
|
306 |
+
# 4. Prepare latent variables
|
307 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
308 |
+
latents, latent_image_ids = self.prepare_latents(
|
309 |
+
batch_size * num_images_per_prompt,
|
310 |
+
num_channels_latents,
|
311 |
+
height,
|
312 |
+
width,
|
313 |
+
prompt_embeds.dtype,
|
314 |
+
device,
|
315 |
+
generator,
|
316 |
+
latents,
|
317 |
+
)
|
318 |
+
|
319 |
+
# 4.1 concat ref tokens to latent
|
320 |
+
origin_img_len = latents.shape[1]
|
321 |
+
embeddings = repeat(self.task_embedding.weight[1], "c -> n l c", n=batch_size, l=origin_img_len)
|
322 |
+
ref_latents = []
|
323 |
+
ref_latent_image_idss = []
|
324 |
+
start_height = height // 16
|
325 |
+
start_width = width // 16
|
326 |
+
for ref_cond in ref_conds:
|
327 |
+
img = ref_cond['img'] # [b, 3, h, w], range [-1, 1]
|
328 |
+
task = ref_cond['task']
|
329 |
+
idx = ref_cond['idx']
|
330 |
+
|
331 |
+
# encode ref with VAE
|
332 |
+
img = img.to(latents)
|
333 |
+
ref_latent = self.vae.encode(img).latent_dist.sample()
|
334 |
+
ref_latent = (ref_latent - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
335 |
+
cur_height = ref_latent.shape[2]
|
336 |
+
cur_width = ref_latent.shape[3]
|
337 |
+
ref_latent = self._pack_latents(ref_latent, batch_size, num_channels_latents, cur_height, cur_width)
|
338 |
+
ref_latent_image_ids = self._prepare_latent_image_ids(
|
339 |
+
batch_size, cur_height, cur_width, device, prompt_embeds.dtype, start_height, start_width
|
340 |
+
)
|
341 |
+
start_height += cur_height // 2
|
342 |
+
start_width += cur_width // 2
|
343 |
+
|
344 |
+
# prepare task_idx_embedding
|
345 |
+
task_idx = get_task_embedding_idx(task)
|
346 |
+
cur_task_embedding = repeat(
|
347 |
+
self.task_embedding.weight[task_idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1]
|
348 |
+
)
|
349 |
+
cur_idx_embedding = repeat(
|
350 |
+
self.idx_embedding.weight[idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1]
|
351 |
+
)
|
352 |
+
cur_embedding = cur_task_embedding + cur_idx_embedding
|
353 |
+
|
354 |
+
# concat ref to latent
|
355 |
+
embeddings = torch.cat([embeddings, cur_embedding], dim=1)
|
356 |
+
ref_latents.append(ref_latent)
|
357 |
+
ref_latent_image_idss.append(ref_latent_image_ids)
|
358 |
+
|
359 |
+
# 5. Prepare timesteps
|
360 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
361 |
+
image_seq_len = latents.shape[1]
|
362 |
+
mu = calculate_shift(
|
363 |
+
image_seq_len,
|
364 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
365 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
366 |
+
self.scheduler.config.get("base_shift", 0.5),
|
367 |
+
self.scheduler.config.get("max_shift", 1.15),
|
368 |
+
)
|
369 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
370 |
+
self.scheduler,
|
371 |
+
num_inference_steps,
|
372 |
+
device,
|
373 |
+
sigmas=sigmas,
|
374 |
+
mu=mu,
|
375 |
+
)
|
376 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
377 |
+
self._num_timesteps = len(timesteps)
|
378 |
+
|
379 |
+
# handle guidance
|
380 |
+
if self.transformer.config.guidance_embeds:
|
381 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
382 |
+
guidance = guidance.expand(latents.shape[0])
|
383 |
+
else:
|
384 |
+
guidance = None
|
385 |
+
neg_guidance = torch.full([1], neg_guidance_scale, device=device, dtype=torch.float32)
|
386 |
+
neg_guidance = neg_guidance.expand(latents.shape[0])
|
387 |
+
first_step_guidance = torch.full([1], first_step_guidance_scale, device=device, dtype=torch.float32)
|
388 |
+
|
389 |
+
if self.joint_attention_kwargs is None:
|
390 |
+
self._joint_attention_kwargs = {}
|
391 |
+
|
392 |
+
# 6. Denoising loop
|
393 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
394 |
+
for i, t in enumerate(timesteps):
|
395 |
+
if self.interrupt:
|
396 |
+
continue
|
397 |
+
|
398 |
+
self._current_timestep = t
|
399 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
400 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
401 |
+
|
402 |
+
noise_pred = self.transformer(
|
403 |
+
hidden_states=torch.cat((latents, *ref_latents), dim=1),
|
404 |
+
timestep=timestep / 1000,
|
405 |
+
guidance=guidance if i > 0 else first_step_guidance,
|
406 |
+
pooled_projections=pooled_prompt_embeds,
|
407 |
+
encoder_hidden_states=prompt_embeds,
|
408 |
+
txt_ids=text_ids,
|
409 |
+
img_ids=torch.cat((latent_image_ids, *ref_latent_image_idss), dim=1),
|
410 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
411 |
+
return_dict=False,
|
412 |
+
embeddings=embeddings,
|
413 |
+
)[0][:, :origin_img_len]
|
414 |
+
|
415 |
+
if do_true_cfg and i >= true_cfg_start_step and i < true_cfg_end_step:
|
416 |
+
neg_noise_pred = self.transformer(
|
417 |
+
hidden_states=latents,
|
418 |
+
timestep=timestep / 1000,
|
419 |
+
guidance=neg_guidance,
|
420 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
421 |
+
encoder_hidden_states=negative_prompt_embeds,
|
422 |
+
txt_ids=text_ids,
|
423 |
+
img_ids=latent_image_ids,
|
424 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
425 |
+
return_dict=False,
|
426 |
+
)[0]
|
427 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
428 |
+
|
429 |
+
# compute the previous noisy sample x_t -> x_t-1
|
430 |
+
latents_dtype = latents.dtype
|
431 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
432 |
+
|
433 |
+
if latents.dtype != latents_dtype and torch.backends.mps.is_available():
|
434 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
435 |
+
latents = latents.to(latents_dtype)
|
436 |
+
|
437 |
+
if callback_on_step_end is not None:
|
438 |
+
callback_kwargs = {}
|
439 |
+
for k in callback_on_step_end_tensor_inputs:
|
440 |
+
callback_kwargs[k] = locals()[k]
|
441 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
442 |
+
|
443 |
+
latents = callback_outputs.pop("latents", latents)
|
444 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
445 |
+
|
446 |
+
# call the callback, if provided
|
447 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
448 |
+
progress_bar.update()
|
449 |
+
|
450 |
+
self._current_timestep = None
|
451 |
+
|
452 |
+
if output_type == "latent":
|
453 |
+
image = latents
|
454 |
+
else:
|
455 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
456 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
457 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
458 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
459 |
+
|
460 |
+
# Offload all models
|
461 |
+
self.maybe_free_model_hooks()
|
462 |
+
|
463 |
+
if not return_dict:
|
464 |
+
return (image,)
|
465 |
+
|
466 |
+
return FluxPipelineOutput(images=image)
|
dreamo/transformer.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Any, Dict, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
21 |
+
from diffusers.utils import (
|
22 |
+
USE_PEFT_BACKEND,
|
23 |
+
logging,
|
24 |
+
scale_lora_layers,
|
25 |
+
unscale_lora_layers,
|
26 |
+
)
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29 |
+
|
30 |
+
|
31 |
+
def flux_transformer_forward(
|
32 |
+
self,
|
33 |
+
hidden_states: torch.Tensor,
|
34 |
+
encoder_hidden_states: torch.Tensor = None,
|
35 |
+
pooled_projections: torch.Tensor = None,
|
36 |
+
timestep: torch.LongTensor = None,
|
37 |
+
img_ids: torch.Tensor = None,
|
38 |
+
txt_ids: torch.Tensor = None,
|
39 |
+
guidance: torch.Tensor = None,
|
40 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
41 |
+
controlnet_block_samples=None,
|
42 |
+
controlnet_single_block_samples=None,
|
43 |
+
return_dict: bool = True,
|
44 |
+
controlnet_blocks_repeat: bool = False,
|
45 |
+
embeddings: torch.Tensor = None,
|
46 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
47 |
+
"""
|
48 |
+
The [`FluxTransformer2DModel`] forward method.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
52 |
+
Input `hidden_states`.
|
53 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
54 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
55 |
+
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
56 |
+
from the embeddings of input conditions.
|
57 |
+
timestep ( `torch.LongTensor`):
|
58 |
+
Used to indicate denoising step.
|
59 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
60 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
61 |
+
joint_attention_kwargs (`dict`, *optional*):
|
62 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
63 |
+
`self.processor` in
|
64 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
65 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
67 |
+
tuple.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
71 |
+
`tuple` where the first element is the sample tensor.
|
72 |
+
"""
|
73 |
+
if joint_attention_kwargs is not None:
|
74 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
75 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
76 |
+
else:
|
77 |
+
lora_scale = 1.0
|
78 |
+
|
79 |
+
if USE_PEFT_BACKEND:
|
80 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
81 |
+
scale_lora_layers(self, lora_scale)
|
82 |
+
else:
|
83 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
84 |
+
logger.warning(
|
85 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
86 |
+
)
|
87 |
+
|
88 |
+
hidden_states = self.x_embedder(hidden_states)
|
89 |
+
# add task and idx embedding
|
90 |
+
if embeddings is not None:
|
91 |
+
hidden_states = hidden_states + embeddings
|
92 |
+
|
93 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
94 |
+
guidance = guidance.to(hidden_states.dtype) * 1000 if guidance is not None else None
|
95 |
+
|
96 |
+
temb = (
|
97 |
+
self.time_text_embed(timestep, pooled_projections)
|
98 |
+
if guidance is None
|
99 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
100 |
+
)
|
101 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
102 |
+
|
103 |
+
if txt_ids.ndim == 3:
|
104 |
+
# logger.warning(
|
105 |
+
# "Passing `txt_ids` 3d torch.Tensor is deprecated."
|
106 |
+
# "Please remove the batch dimension and pass it as a 2d torch Tensor"
|
107 |
+
# )
|
108 |
+
txt_ids = txt_ids[0]
|
109 |
+
if img_ids.ndim == 3:
|
110 |
+
# logger.warning(
|
111 |
+
# "Passing `img_ids` 3d torch.Tensor is deprecated."
|
112 |
+
# "Please remove the batch dimension and pass it as a 2d torch Tensor"
|
113 |
+
# )
|
114 |
+
img_ids = img_ids[0]
|
115 |
+
|
116 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
117 |
+
image_rotary_emb = self.pos_embed(ids)
|
118 |
+
|
119 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
120 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
121 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
122 |
+
block,
|
123 |
+
hidden_states,
|
124 |
+
encoder_hidden_states,
|
125 |
+
temb,
|
126 |
+
image_rotary_emb,
|
127 |
+
)
|
128 |
+
|
129 |
+
else:
|
130 |
+
encoder_hidden_states, hidden_states = block(
|
131 |
+
hidden_states=hidden_states,
|
132 |
+
encoder_hidden_states=encoder_hidden_states,
|
133 |
+
temb=temb,
|
134 |
+
image_rotary_emb=image_rotary_emb,
|
135 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
136 |
+
)
|
137 |
+
|
138 |
+
# controlnet residual
|
139 |
+
if controlnet_block_samples is not None:
|
140 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
141 |
+
interval_control = int(np.ceil(interval_control))
|
142 |
+
# For Xlabs ControlNet.
|
143 |
+
if controlnet_blocks_repeat:
|
144 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
145 |
+
else:
|
146 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
147 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
148 |
+
|
149 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
150 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
151 |
+
hidden_states = self._gradient_checkpointing_func(
|
152 |
+
block,
|
153 |
+
hidden_states,
|
154 |
+
temb,
|
155 |
+
image_rotary_emb,
|
156 |
+
)
|
157 |
+
|
158 |
+
else:
|
159 |
+
hidden_states = block(
|
160 |
+
hidden_states=hidden_states,
|
161 |
+
temb=temb,
|
162 |
+
image_rotary_emb=image_rotary_emb,
|
163 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
164 |
+
)
|
165 |
+
|
166 |
+
# controlnet residual
|
167 |
+
if controlnet_single_block_samples is not None:
|
168 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
169 |
+
interval_control = int(np.ceil(interval_control))
|
170 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
171 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
172 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
173 |
+
)
|
174 |
+
|
175 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
176 |
+
|
177 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
178 |
+
output = self.proj_out(hidden_states)
|
179 |
+
|
180 |
+
if USE_PEFT_BACKEND:
|
181 |
+
# remove `lora_scale` from each PEFT layer
|
182 |
+
unscale_lora_layers(self, lora_scale)
|
183 |
+
|
184 |
+
if not return_dict:
|
185 |
+
return (output,)
|
186 |
+
|
187 |
+
return Transformer2DModelOutput(sample=output)
|
dreamo/utils.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
import re
|
17 |
+
|
18 |
+
import cv2
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
from torchvision.utils import make_grid
|
22 |
+
|
23 |
+
|
24 |
+
# from basicsr
|
25 |
+
def img2tensor(imgs, bgr2rgb=True, float32=True):
|
26 |
+
"""Numpy array to tensor.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
imgs (list[ndarray] | ndarray): Input images.
|
30 |
+
bgr2rgb (bool): Whether to change bgr to rgb.
|
31 |
+
float32 (bool): Whether to change to float32.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
list[tensor] | tensor: Tensor images. If returned results only have
|
35 |
+
one element, just return tensor.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def _totensor(img, bgr2rgb, float32):
|
39 |
+
if img.shape[2] == 3 and bgr2rgb:
|
40 |
+
if img.dtype == 'float64':
|
41 |
+
img = img.astype('float32')
|
42 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
43 |
+
img = torch.from_numpy(img.transpose(2, 0, 1))
|
44 |
+
if float32:
|
45 |
+
img = img.float()
|
46 |
+
return img
|
47 |
+
|
48 |
+
if isinstance(imgs, list):
|
49 |
+
return [_totensor(img, bgr2rgb, float32) for img in imgs]
|
50 |
+
return _totensor(imgs, bgr2rgb, float32)
|
51 |
+
|
52 |
+
|
53 |
+
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
|
54 |
+
"""Convert torch Tensors into image numpy arrays.
|
55 |
+
|
56 |
+
After clamping to [min, max], values will be normalized to [0, 1].
|
57 |
+
|
58 |
+
Args:
|
59 |
+
tensor (Tensor or list[Tensor]): Accept shapes:
|
60 |
+
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
|
61 |
+
2) 3D Tensor of shape (3/1 x H x W);
|
62 |
+
3) 2D Tensor of shape (H x W).
|
63 |
+
Tensor channel should be in RGB order.
|
64 |
+
rgb2bgr (bool): Whether to change rgb to bgr.
|
65 |
+
out_type (numpy type): output types. If ``np.uint8``, transform outputs
|
66 |
+
to uint8 type with range [0, 255]; otherwise, float type with
|
67 |
+
range [0, 1]. Default: ``np.uint8``.
|
68 |
+
min_max (tuple[int]): min and max values for clamp.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
|
72 |
+
shape (H x W). The channel order is BGR.
|
73 |
+
"""
|
74 |
+
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
75 |
+
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
|
76 |
+
|
77 |
+
if torch.is_tensor(tensor):
|
78 |
+
tensor = [tensor]
|
79 |
+
result = []
|
80 |
+
for _tensor in tensor:
|
81 |
+
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
|
82 |
+
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
|
83 |
+
|
84 |
+
n_dim = _tensor.dim()
|
85 |
+
if n_dim == 4:
|
86 |
+
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
|
87 |
+
img_np = img_np.transpose(1, 2, 0)
|
88 |
+
if rgb2bgr:
|
89 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
90 |
+
elif n_dim == 3:
|
91 |
+
img_np = _tensor.numpy()
|
92 |
+
img_np = img_np.transpose(1, 2, 0)
|
93 |
+
if img_np.shape[2] == 1: # gray image
|
94 |
+
img_np = np.squeeze(img_np, axis=2)
|
95 |
+
else:
|
96 |
+
if rgb2bgr:
|
97 |
+
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
98 |
+
elif n_dim == 2:
|
99 |
+
img_np = _tensor.numpy()
|
100 |
+
else:
|
101 |
+
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
|
102 |
+
if out_type == np.uint8:
|
103 |
+
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
|
104 |
+
img_np = (img_np * 255.0).round()
|
105 |
+
img_np = img_np.astype(out_type)
|
106 |
+
result.append(img_np)
|
107 |
+
if len(result) == 1:
|
108 |
+
result = result[0]
|
109 |
+
return result
|
110 |
+
|
111 |
+
|
112 |
+
def resize_numpy_image_area(image, area=512 * 512):
|
113 |
+
h, w = image.shape[:2]
|
114 |
+
k = math.sqrt(area / (h * w))
|
115 |
+
h = int(h * k) - (int(h * k) % 16)
|
116 |
+
w = int(w * k) - (int(w * k) % 16)
|
117 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
118 |
+
return image
|
119 |
+
|
120 |
+
|
121 |
+
# reference: https://github.com/huggingface/diffusers/pull/9295/files
|
122 |
+
def convert_flux_lora_to_diffusers(old_state_dict):
|
123 |
+
new_state_dict = {}
|
124 |
+
orig_keys = list(old_state_dict.keys())
|
125 |
+
|
126 |
+
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
|
127 |
+
down_weight = sds_sd.pop(sds_key)
|
128 |
+
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))
|
129 |
+
|
130 |
+
# calculate dims if not provided
|
131 |
+
num_splits = len(ait_keys)
|
132 |
+
if dims is None:
|
133 |
+
dims = [up_weight.shape[0] // num_splits] * num_splits
|
134 |
+
else:
|
135 |
+
assert sum(dims) == up_weight.shape[0]
|
136 |
+
|
137 |
+
# make ai-toolkit weight
|
138 |
+
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
|
139 |
+
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
|
140 |
+
|
141 |
+
# down_weight is copied to each split
|
142 |
+
ait_sd.update({k: down_weight for k in ait_down_keys})
|
143 |
+
|
144 |
+
# up_weight is split to each split
|
145 |
+
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
|
146 |
+
|
147 |
+
for old_key in orig_keys:
|
148 |
+
# Handle double_blocks
|
149 |
+
if 'double_blocks' in old_key:
|
150 |
+
block_num = re.search(r"double_blocks_(\d+)", old_key).group(1)
|
151 |
+
new_key = f"transformer.transformer_blocks.{block_num}"
|
152 |
+
|
153 |
+
if "proj_lora1" in old_key:
|
154 |
+
new_key += ".attn.to_out.0"
|
155 |
+
elif "proj_lora2" in old_key:
|
156 |
+
new_key += ".attn.to_add_out"
|
157 |
+
elif "qkv_lora2" in old_key and "up" not in old_key:
|
158 |
+
handle_qkv(
|
159 |
+
old_state_dict,
|
160 |
+
new_state_dict,
|
161 |
+
old_key,
|
162 |
+
[
|
163 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
|
164 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
|
165 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
|
166 |
+
],
|
167 |
+
)
|
168 |
+
# continue
|
169 |
+
elif "qkv_lora1" in old_key and "up" not in old_key:
|
170 |
+
handle_qkv(
|
171 |
+
old_state_dict,
|
172 |
+
new_state_dict,
|
173 |
+
old_key,
|
174 |
+
[
|
175 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_q",
|
176 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_k",
|
177 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_v",
|
178 |
+
],
|
179 |
+
)
|
180 |
+
# continue
|
181 |
+
|
182 |
+
if "down" in old_key:
|
183 |
+
new_key += ".lora_A.weight"
|
184 |
+
elif "up" in old_key:
|
185 |
+
new_key += ".lora_B.weight"
|
186 |
+
|
187 |
+
# Handle single_blocks
|
188 |
+
elif 'single_blocks' in old_key:
|
189 |
+
block_num = re.search(r"single_blocks_(\d+)", old_key).group(1)
|
190 |
+
new_key = f"transformer.single_transformer_blocks.{block_num}"
|
191 |
+
|
192 |
+
if "proj_lora" in old_key:
|
193 |
+
new_key += ".proj_out"
|
194 |
+
elif "qkv_lora" in old_key and "up" not in old_key:
|
195 |
+
handle_qkv(
|
196 |
+
old_state_dict,
|
197 |
+
new_state_dict,
|
198 |
+
old_key,
|
199 |
+
[
|
200 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_q",
|
201 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_k",
|
202 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_v",
|
203 |
+
],
|
204 |
+
)
|
205 |
+
|
206 |
+
if "down" in old_key:
|
207 |
+
new_key += ".lora_A.weight"
|
208 |
+
elif "up" in old_key:
|
209 |
+
new_key += ".lora_B.weight"
|
210 |
+
|
211 |
+
else:
|
212 |
+
# Handle other potential key patterns here
|
213 |
+
new_key = old_key
|
214 |
+
|
215 |
+
# Since we already handle qkv above.
|
216 |
+
if "qkv" not in old_key and 'embedding' not in old_key:
|
217 |
+
new_state_dict[new_key] = old_state_dict.pop(old_key)
|
218 |
+
|
219 |
+
# if len(old_state_dict) > 0:
|
220 |
+
# raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")
|
221 |
+
|
222 |
+
return new_state_dict
|
example_inputs/cat.png
ADDED
![]() |
Git LFS Details
|
example_inputs/dog1.png
ADDED
![]() |
Git LFS Details
|
example_inputs/dog2.png
ADDED
![]() |
Git LFS Details
|
example_inputs/dress.png
ADDED
![]() |
Git LFS Details
|
example_inputs/hinton.jpeg
ADDED
![]() |
Git LFS Details
|
example_inputs/man1.png
ADDED
![]() |
Git LFS Details
|
example_inputs/man2.jpeg
ADDED
![]() |
Git LFS Details
|
example_inputs/mickey.png
ADDED
![]() |
Git LFS Details
|
example_inputs/mountain.png
ADDED
![]() |
Git LFS Details
|
example_inputs/perfume.png
ADDED
![]() |
Git LFS Details
|
example_inputs/shirt.png
ADDED
![]() |
Git LFS Details
|
example_inputs/skirt.jpeg
ADDED
![]() |
Git LFS Details
|
example_inputs/toy1.png
ADDED
![]() |
Git LFS Details
|
example_inputs/woman1.png
ADDED
![]() |
Git LFS Details
|
example_inputs/woman2.png
ADDED
![]() |
Git LFS Details
|
example_inputs/woman3.png
ADDED
![]() |
Git LFS Details
|
example_inputs/woman4.jpeg
ADDED
![]() |
Git LFS Details
|
models/.gitkeep
ADDED
File without changes
|
pyproject.toml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.ruff]
|
2 |
+
line-length = 120
|
3 |
+
exclude = ['tools']
|
4 |
+
# A list of file patterns to omit from linting, in addition to those specified by exclude.
|
5 |
+
extend-exclude = ["__pycache__", "*.pyc", "*.egg-info", ".cache"]
|
6 |
+
|
7 |
+
select = ["E", "F", "W", "C90", "I", "UP", "B", "C4", "RET", "RUF", "SIM"]
|
8 |
+
|
9 |
+
|
10 |
+
ignore = [
|
11 |
+
"UP006", # UP006: Use list instead of typing.List for type annotations
|
12 |
+
"UP007", # UP007: Use X | Y for type annotations
|
13 |
+
"UP009",
|
14 |
+
"UP035",
|
15 |
+
"UP038",
|
16 |
+
"E402",
|
17 |
+
"RET504",
|
18 |
+
"C901",
|
19 |
+
"RUF013",
|
20 |
+
"B006",
|
21 |
+
]
|
22 |
+
|
23 |
+
[tool.isort]
|
24 |
+
profile = "black"
|
25 |
+
|
26 |
+
[tool.black]
|
27 |
+
line-length = 119
|
28 |
+
skip-string-normalization = 1
|
29 |
+
exclude = 'tools'
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torch==2.3.1+cu118
|
3 |
+
torchvision==0.18.1+cu118
|
4 |
+
|
5 |
+
diffusers==0.31.0
|
6 |
+
transformers==4.45.2
|
7 |
+
sentencepiece
|
8 |
+
spaces
|
9 |
+
huggingface_hub
|
10 |
+
accelerate==0.32.0
|
11 |
+
peft
|
12 |
+
git+https://github.com/ToTheBeginning/facexlib.git
|
tools/BEN2.py
ADDED
@@ -0,0 +1,1359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Prama LLC
|
2 |
+
# SPDX-License-Identifier: MIT
|
3 |
+
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import subprocess
|
8 |
+
import tempfile
|
9 |
+
import time
|
10 |
+
|
11 |
+
import cv2
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torch.utils.checkpoint as checkpoint
|
17 |
+
from einops import rearrange
|
18 |
+
from PIL import Image, ImageOps
|
19 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
20 |
+
from torchvision import transforms
|
21 |
+
|
22 |
+
|
23 |
+
def set_random_seed(seed):
|
24 |
+
random.seed(seed)
|
25 |
+
np.random.seed(seed)
|
26 |
+
torch.manual_seed(seed)
|
27 |
+
torch.cuda.manual_seed(seed)
|
28 |
+
torch.cuda.manual_seed_all(seed)
|
29 |
+
torch.backends.cudnn.deterministic = True
|
30 |
+
torch.backends.cudnn.benchmark = False
|
31 |
+
|
32 |
+
|
33 |
+
# set_random_seed(9)
|
34 |
+
|
35 |
+
torch.set_float32_matmul_precision('highest')
|
36 |
+
|
37 |
+
|
38 |
+
class Mlp(nn.Module):
|
39 |
+
""" Multilayer perceptron."""
|
40 |
+
|
41 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
42 |
+
super().__init__()
|
43 |
+
out_features = out_features or in_features
|
44 |
+
hidden_features = hidden_features or in_features
|
45 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
46 |
+
self.act = act_layer()
|
47 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
48 |
+
self.drop = nn.Dropout(drop)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = self.fc1(x)
|
52 |
+
x = self.act(x)
|
53 |
+
x = self.drop(x)
|
54 |
+
x = self.fc2(x)
|
55 |
+
x = self.drop(x)
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
def window_partition(x, window_size):
|
60 |
+
"""
|
61 |
+
Args:
|
62 |
+
x: (B, H, W, C)
|
63 |
+
window_size (int): window size
|
64 |
+
Returns:
|
65 |
+
windows: (num_windows*B, window_size, window_size, C)
|
66 |
+
"""
|
67 |
+
B, H, W, C = x.shape
|
68 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
69 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
70 |
+
return windows
|
71 |
+
|
72 |
+
|
73 |
+
def window_reverse(windows, window_size, H, W):
|
74 |
+
"""
|
75 |
+
Args:
|
76 |
+
windows: (num_windows*B, window_size, window_size, C)
|
77 |
+
window_size (int): Window size
|
78 |
+
H (int): Height of image
|
79 |
+
W (int): Width of image
|
80 |
+
Returns:
|
81 |
+
x: (B, H, W, C)
|
82 |
+
"""
|
83 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
84 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
85 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
class WindowAttention(nn.Module):
|
90 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
91 |
+
It supports both of shifted and non-shifted window.
|
92 |
+
Args:
|
93 |
+
dim (int): Number of input channels.
|
94 |
+
window_size (tuple[int]): The height and width of the window.
|
95 |
+
num_heads (int): Number of attention heads.
|
96 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
97 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
98 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
99 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
103 |
+
|
104 |
+
super().__init__()
|
105 |
+
self.dim = dim
|
106 |
+
self.window_size = window_size # Wh, Ww
|
107 |
+
self.num_heads = num_heads
|
108 |
+
head_dim = dim // num_heads
|
109 |
+
self.scale = qk_scale or head_dim ** -0.5
|
110 |
+
|
111 |
+
# define a parameter table of relative position bias
|
112 |
+
self.relative_position_bias_table = nn.Parameter(
|
113 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
114 |
+
|
115 |
+
# get pair-wise relative position index for each token inside the window
|
116 |
+
coords_h = torch.arange(self.window_size[0])
|
117 |
+
coords_w = torch.arange(self.window_size[1])
|
118 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
119 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
120 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
121 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
122 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
123 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
124 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
125 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
126 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
127 |
+
|
128 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
129 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
130 |
+
self.proj = nn.Linear(dim, dim)
|
131 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
132 |
+
|
133 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
134 |
+
self.softmax = nn.Softmax(dim=-1)
|
135 |
+
|
136 |
+
def forward(self, x, mask=None):
|
137 |
+
""" Forward function.
|
138 |
+
Args:
|
139 |
+
x: input features with shape of (num_windows*B, N, C)
|
140 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
141 |
+
"""
|
142 |
+
B_, N, C = x.shape
|
143 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
144 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
145 |
+
|
146 |
+
q = q * self.scale
|
147 |
+
attn = (q @ k.transpose(-2, -1))
|
148 |
+
|
149 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
150 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
151 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
152 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
153 |
+
|
154 |
+
if mask is not None:
|
155 |
+
nW = mask.shape[0]
|
156 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
157 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
158 |
+
attn = self.softmax(attn)
|
159 |
+
else:
|
160 |
+
attn = self.softmax(attn)
|
161 |
+
|
162 |
+
attn = self.attn_drop(attn)
|
163 |
+
|
164 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
165 |
+
x = self.proj(x)
|
166 |
+
x = self.proj_drop(x)
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
class SwinTransformerBlock(nn.Module):
|
171 |
+
""" Swin Transformer Block.
|
172 |
+
Args:
|
173 |
+
dim (int): Number of input channels.
|
174 |
+
num_heads (int): Number of attention heads.
|
175 |
+
window_size (int): Window size.
|
176 |
+
shift_size (int): Shift size for SW-MSA.
|
177 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
178 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
179 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
180 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
181 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
182 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
183 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
184 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
185 |
+
"""
|
186 |
+
|
187 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
188 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
189 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
190 |
+
super().__init__()
|
191 |
+
self.dim = dim
|
192 |
+
self.num_heads = num_heads
|
193 |
+
self.window_size = window_size
|
194 |
+
self.shift_size = shift_size
|
195 |
+
self.mlp_ratio = mlp_ratio
|
196 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
197 |
+
|
198 |
+
self.norm1 = norm_layer(dim)
|
199 |
+
self.attn = WindowAttention(
|
200 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
201 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
202 |
+
|
203 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
204 |
+
self.norm2 = norm_layer(dim)
|
205 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
206 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
207 |
+
|
208 |
+
self.H = None
|
209 |
+
self.W = None
|
210 |
+
|
211 |
+
def forward(self, x, mask_matrix):
|
212 |
+
""" Forward function.
|
213 |
+
Args:
|
214 |
+
x: Input feature, tensor size (B, H*W, C).
|
215 |
+
H, W: Spatial resolution of the input feature.
|
216 |
+
mask_matrix: Attention mask for cyclic shift.
|
217 |
+
"""
|
218 |
+
B, L, C = x.shape
|
219 |
+
H, W = self.H, self.W
|
220 |
+
assert L == H * W, "input feature has wrong size"
|
221 |
+
|
222 |
+
shortcut = x
|
223 |
+
x = self.norm1(x)
|
224 |
+
x = x.view(B, H, W, C)
|
225 |
+
|
226 |
+
# pad feature maps to multiples of window size
|
227 |
+
pad_l = pad_t = 0
|
228 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
229 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
230 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
231 |
+
_, Hp, Wp, _ = x.shape
|
232 |
+
|
233 |
+
# cyclic shift
|
234 |
+
if self.shift_size > 0:
|
235 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
236 |
+
attn_mask = mask_matrix
|
237 |
+
else:
|
238 |
+
shifted_x = x
|
239 |
+
attn_mask = None
|
240 |
+
|
241 |
+
# partition windows
|
242 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
243 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
244 |
+
|
245 |
+
# W-MSA/SW-MSA
|
246 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
247 |
+
|
248 |
+
# merge windows
|
249 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
250 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
251 |
+
|
252 |
+
# reverse cyclic shift
|
253 |
+
if self.shift_size > 0:
|
254 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
255 |
+
else:
|
256 |
+
x = shifted_x
|
257 |
+
|
258 |
+
if pad_r > 0 or pad_b > 0:
|
259 |
+
x = x[:, :H, :W, :].contiguous()
|
260 |
+
|
261 |
+
x = x.view(B, H * W, C)
|
262 |
+
|
263 |
+
# FFN
|
264 |
+
x = shortcut + self.drop_path(x)
|
265 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
266 |
+
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class PatchMerging(nn.Module):
|
271 |
+
""" Patch Merging Layer
|
272 |
+
Args:
|
273 |
+
dim (int): Number of input channels.
|
274 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
275 |
+
"""
|
276 |
+
|
277 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
278 |
+
super().__init__()
|
279 |
+
self.dim = dim
|
280 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
281 |
+
self.norm = norm_layer(4 * dim)
|
282 |
+
|
283 |
+
def forward(self, x, H, W):
|
284 |
+
""" Forward function.
|
285 |
+
Args:
|
286 |
+
x: Input feature, tensor size (B, H*W, C).
|
287 |
+
H, W: Spatial resolution of the input feature.
|
288 |
+
"""
|
289 |
+
B, L, C = x.shape
|
290 |
+
assert L == H * W, "input feature has wrong size"
|
291 |
+
|
292 |
+
x = x.view(B, H, W, C)
|
293 |
+
|
294 |
+
# padding
|
295 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
296 |
+
if pad_input:
|
297 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
298 |
+
|
299 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
300 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
301 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
302 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
303 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
304 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
305 |
+
|
306 |
+
x = self.norm(x)
|
307 |
+
x = self.reduction(x)
|
308 |
+
|
309 |
+
return x
|
310 |
+
|
311 |
+
|
312 |
+
class BasicLayer(nn.Module):
|
313 |
+
""" A basic Swin Transformer layer for one stage.
|
314 |
+
Args:
|
315 |
+
dim (int): Number of feature channels
|
316 |
+
depth (int): Depths of this stage.
|
317 |
+
num_heads (int): Number of attention head.
|
318 |
+
window_size (int): Local window size. Default: 7.
|
319 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
320 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
321 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
322 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
323 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
324 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
325 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
326 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
327 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
328 |
+
"""
|
329 |
+
|
330 |
+
def __init__(self,
|
331 |
+
dim,
|
332 |
+
depth,
|
333 |
+
num_heads,
|
334 |
+
window_size=7,
|
335 |
+
mlp_ratio=4.,
|
336 |
+
qkv_bias=True,
|
337 |
+
qk_scale=None,
|
338 |
+
drop=0.,
|
339 |
+
attn_drop=0.,
|
340 |
+
drop_path=0.,
|
341 |
+
norm_layer=nn.LayerNorm,
|
342 |
+
downsample=None,
|
343 |
+
use_checkpoint=False):
|
344 |
+
super().__init__()
|
345 |
+
self.window_size = window_size
|
346 |
+
self.shift_size = window_size // 2
|
347 |
+
self.depth = depth
|
348 |
+
self.use_checkpoint = use_checkpoint
|
349 |
+
|
350 |
+
# build blocks
|
351 |
+
self.blocks = nn.ModuleList([
|
352 |
+
SwinTransformerBlock(
|
353 |
+
dim=dim,
|
354 |
+
num_heads=num_heads,
|
355 |
+
window_size=window_size,
|
356 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
357 |
+
mlp_ratio=mlp_ratio,
|
358 |
+
qkv_bias=qkv_bias,
|
359 |
+
qk_scale=qk_scale,
|
360 |
+
drop=drop,
|
361 |
+
attn_drop=attn_drop,
|
362 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
363 |
+
norm_layer=norm_layer)
|
364 |
+
for i in range(depth)])
|
365 |
+
|
366 |
+
# patch merging layer
|
367 |
+
if downsample is not None:
|
368 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
369 |
+
else:
|
370 |
+
self.downsample = None
|
371 |
+
|
372 |
+
def forward(self, x, H, W):
|
373 |
+
""" Forward function.
|
374 |
+
Args:
|
375 |
+
x: Input feature, tensor size (B, H*W, C).
|
376 |
+
H, W: Spatial resolution of the input feature.
|
377 |
+
"""
|
378 |
+
|
379 |
+
# calculate attention mask for SW-MSA
|
380 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
381 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
382 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
383 |
+
h_slices = (slice(0, -self.window_size),
|
384 |
+
slice(-self.window_size, -self.shift_size),
|
385 |
+
slice(-self.shift_size, None))
|
386 |
+
w_slices = (slice(0, -self.window_size),
|
387 |
+
slice(-self.window_size, -self.shift_size),
|
388 |
+
slice(-self.shift_size, None))
|
389 |
+
cnt = 0
|
390 |
+
for h in h_slices:
|
391 |
+
for w in w_slices:
|
392 |
+
img_mask[:, h, w, :] = cnt
|
393 |
+
cnt += 1
|
394 |
+
|
395 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
396 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
397 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
398 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
399 |
+
|
400 |
+
for blk in self.blocks:
|
401 |
+
blk.H, blk.W = H, W
|
402 |
+
if self.use_checkpoint:
|
403 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
404 |
+
else:
|
405 |
+
x = blk(x, attn_mask)
|
406 |
+
if self.downsample is not None:
|
407 |
+
x_down = self.downsample(x, H, W)
|
408 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
409 |
+
return x, H, W, x_down, Wh, Ww
|
410 |
+
else:
|
411 |
+
return x, H, W, x, H, W
|
412 |
+
|
413 |
+
|
414 |
+
class PatchEmbed(nn.Module):
|
415 |
+
""" Image to Patch Embedding
|
416 |
+
Args:
|
417 |
+
patch_size (int): Patch token size. Default: 4.
|
418 |
+
in_chans (int): Number of input image channels. Default: 3.
|
419 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
420 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
421 |
+
"""
|
422 |
+
|
423 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
424 |
+
super().__init__()
|
425 |
+
patch_size = to_2tuple(patch_size)
|
426 |
+
self.patch_size = patch_size
|
427 |
+
|
428 |
+
self.in_chans = in_chans
|
429 |
+
self.embed_dim = embed_dim
|
430 |
+
|
431 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
432 |
+
if norm_layer is not None:
|
433 |
+
self.norm = norm_layer(embed_dim)
|
434 |
+
else:
|
435 |
+
self.norm = None
|
436 |
+
|
437 |
+
def forward(self, x):
|
438 |
+
"""Forward function."""
|
439 |
+
# padding
|
440 |
+
_, _, H, W = x.size()
|
441 |
+
if W % self.patch_size[1] != 0:
|
442 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
443 |
+
if H % self.patch_size[0] != 0:
|
444 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
445 |
+
|
446 |
+
x = self.proj(x) # B C Wh Ww
|
447 |
+
if self.norm is not None:
|
448 |
+
Wh, Ww = x.size(2), x.size(3)
|
449 |
+
x = x.flatten(2).transpose(1, 2)
|
450 |
+
x = self.norm(x)
|
451 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
452 |
+
|
453 |
+
return x
|
454 |
+
|
455 |
+
|
456 |
+
class SwinTransformer(nn.Module):
|
457 |
+
""" Swin Transformer backbone.
|
458 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
459 |
+
https://arxiv.org/pdf/2103.14030
|
460 |
+
Args:
|
461 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
462 |
+
used in absolute postion embedding. Default 224.
|
463 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
464 |
+
in_chans (int): Number of input image channels. Default: 3.
|
465 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
466 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
467 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
468 |
+
window_size (int): Window size. Default: 7.
|
469 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
470 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
471 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
472 |
+
drop_rate (float): Dropout rate.
|
473 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
474 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
475 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
476 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
477 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
478 |
+
out_indices (Sequence[int]): Output from which stages.
|
479 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
480 |
+
-1 means not freezing any parameters.
|
481 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
482 |
+
"""
|
483 |
+
|
484 |
+
def __init__(self,
|
485 |
+
pretrain_img_size=224,
|
486 |
+
patch_size=4,
|
487 |
+
in_chans=3,
|
488 |
+
embed_dim=96,
|
489 |
+
depths=[2, 2, 6, 2],
|
490 |
+
num_heads=[3, 6, 12, 24],
|
491 |
+
window_size=7,
|
492 |
+
mlp_ratio=4.,
|
493 |
+
qkv_bias=True,
|
494 |
+
qk_scale=None,
|
495 |
+
drop_rate=0.,
|
496 |
+
attn_drop_rate=0.,
|
497 |
+
drop_path_rate=0.2,
|
498 |
+
norm_layer=nn.LayerNorm,
|
499 |
+
ape=False,
|
500 |
+
patch_norm=True,
|
501 |
+
out_indices=(0, 1, 2, 3),
|
502 |
+
frozen_stages=-1,
|
503 |
+
use_checkpoint=False):
|
504 |
+
super().__init__()
|
505 |
+
|
506 |
+
self.pretrain_img_size = pretrain_img_size
|
507 |
+
self.num_layers = len(depths)
|
508 |
+
self.embed_dim = embed_dim
|
509 |
+
self.ape = ape
|
510 |
+
self.patch_norm = patch_norm
|
511 |
+
self.out_indices = out_indices
|
512 |
+
self.frozen_stages = frozen_stages
|
513 |
+
|
514 |
+
# split image into non-overlapping patches
|
515 |
+
self.patch_embed = PatchEmbed(
|
516 |
+
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
|
517 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
518 |
+
|
519 |
+
# absolute position embedding
|
520 |
+
if self.ape:
|
521 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
522 |
+
patch_size = to_2tuple(patch_size)
|
523 |
+
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
|
524 |
+
|
525 |
+
self.absolute_pos_embed = nn.Parameter(
|
526 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
|
527 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
528 |
+
|
529 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
530 |
+
|
531 |
+
# stochastic depth
|
532 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
533 |
+
|
534 |
+
# build layers
|
535 |
+
self.layers = nn.ModuleList()
|
536 |
+
for i_layer in range(self.num_layers):
|
537 |
+
layer = BasicLayer(
|
538 |
+
dim=int(embed_dim * 2 ** i_layer),
|
539 |
+
depth=depths[i_layer],
|
540 |
+
num_heads=num_heads[i_layer],
|
541 |
+
window_size=window_size,
|
542 |
+
mlp_ratio=mlp_ratio,
|
543 |
+
qkv_bias=qkv_bias,
|
544 |
+
qk_scale=qk_scale,
|
545 |
+
drop=drop_rate,
|
546 |
+
attn_drop=attn_drop_rate,
|
547 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
548 |
+
norm_layer=norm_layer,
|
549 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
550 |
+
use_checkpoint=use_checkpoint)
|
551 |
+
self.layers.append(layer)
|
552 |
+
|
553 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
554 |
+
self.num_features = num_features
|
555 |
+
|
556 |
+
# add a norm layer for each output
|
557 |
+
for i_layer in out_indices:
|
558 |
+
layer = norm_layer(num_features[i_layer])
|
559 |
+
layer_name = f'norm{i_layer}'
|
560 |
+
self.add_module(layer_name, layer)
|
561 |
+
|
562 |
+
self._freeze_stages()
|
563 |
+
|
564 |
+
def _freeze_stages(self):
|
565 |
+
if self.frozen_stages >= 0:
|
566 |
+
self.patch_embed.eval()
|
567 |
+
for param in self.patch_embed.parameters():
|
568 |
+
param.requires_grad = False
|
569 |
+
|
570 |
+
if self.frozen_stages >= 1 and self.ape:
|
571 |
+
self.absolute_pos_embed.requires_grad = False
|
572 |
+
|
573 |
+
if self.frozen_stages >= 2:
|
574 |
+
self.pos_drop.eval()
|
575 |
+
for i in range(0, self.frozen_stages - 1):
|
576 |
+
m = self.layers[i]
|
577 |
+
m.eval()
|
578 |
+
for param in m.parameters():
|
579 |
+
param.requires_grad = False
|
580 |
+
|
581 |
+
def forward(self, x):
|
582 |
+
|
583 |
+
x = self.patch_embed(x)
|
584 |
+
|
585 |
+
Wh, Ww = x.size(2), x.size(3)
|
586 |
+
if self.ape:
|
587 |
+
# interpolate the position embedding to the corresponding size
|
588 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
589 |
+
x = (x + absolute_pos_embed) # B Wh*Ww C
|
590 |
+
|
591 |
+
outs = [x.contiguous()]
|
592 |
+
x = x.flatten(2).transpose(1, 2)
|
593 |
+
x = self.pos_drop(x)
|
594 |
+
|
595 |
+
for i in range(self.num_layers):
|
596 |
+
layer = self.layers[i]
|
597 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
598 |
+
|
599 |
+
if i in self.out_indices:
|
600 |
+
norm_layer = getattr(self, f'norm{i}')
|
601 |
+
x_out = norm_layer(x_out)
|
602 |
+
|
603 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
604 |
+
outs.append(out)
|
605 |
+
|
606 |
+
return tuple(outs)
|
607 |
+
|
608 |
+
|
609 |
+
def get_activation_fn(activation):
|
610 |
+
"""Return an activation function given a string"""
|
611 |
+
if activation == "gelu":
|
612 |
+
return F.gelu
|
613 |
+
|
614 |
+
raise RuntimeError(F"activation should be gelu, not {activation}.")
|
615 |
+
|
616 |
+
|
617 |
+
def make_cbr(in_dim, out_dim):
|
618 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
|
619 |
+
|
620 |
+
|
621 |
+
def make_cbg(in_dim, out_dim):
|
622 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
|
623 |
+
|
624 |
+
|
625 |
+
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
|
626 |
+
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
|
627 |
+
|
628 |
+
|
629 |
+
def resize_as(x, y, interpolation='bilinear'):
|
630 |
+
return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
|
631 |
+
|
632 |
+
|
633 |
+
def image2patches(x):
|
634 |
+
"""b c (hg h) (wg w) -> (hg wg b) c h w"""
|
635 |
+
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
636 |
+
return x
|
637 |
+
|
638 |
+
|
639 |
+
def patches2image(x):
|
640 |
+
"""(hg wg b) c h w -> b c (hg h) (wg w)"""
|
641 |
+
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
|
642 |
+
return x
|
643 |
+
|
644 |
+
|
645 |
+
class PositionEmbeddingSine:
|
646 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
647 |
+
super().__init__()
|
648 |
+
self.num_pos_feats = num_pos_feats
|
649 |
+
self.temperature = temperature
|
650 |
+
self.normalize = normalize
|
651 |
+
if scale is not None and normalize is False:
|
652 |
+
raise ValueError("normalize should be True if scale is passed")
|
653 |
+
if scale is None:
|
654 |
+
scale = 2 * math.pi
|
655 |
+
self.scale = scale
|
656 |
+
self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32)
|
657 |
+
|
658 |
+
def __call__(self, b, h, w):
|
659 |
+
device = self.dim_t.device
|
660 |
+
mask = torch.zeros([b, h, w], dtype=torch.bool, device=device)
|
661 |
+
assert mask is not None
|
662 |
+
not_mask = ~mask
|
663 |
+
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
|
664 |
+
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
|
665 |
+
if self.normalize:
|
666 |
+
eps = 1e-6
|
667 |
+
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
|
668 |
+
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
|
669 |
+
|
670 |
+
dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats)
|
671 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
672 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
673 |
+
|
674 |
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
675 |
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
676 |
+
|
677 |
+
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
678 |
+
|
679 |
+
|
680 |
+
class PositionEmbeddingSine:
|
681 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
682 |
+
super().__init__()
|
683 |
+
self.num_pos_feats = num_pos_feats
|
684 |
+
self.temperature = temperature
|
685 |
+
self.normalize = normalize
|
686 |
+
if scale is not None and normalize is False:
|
687 |
+
raise ValueError("normalize should be True if scale is passed")
|
688 |
+
if scale is None:
|
689 |
+
scale = 2 * math.pi
|
690 |
+
self.scale = scale
|
691 |
+
self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32)
|
692 |
+
|
693 |
+
def __call__(self, b, h, w):
|
694 |
+
device = self.dim_t.device
|
695 |
+
mask = torch.zeros([b, h, w], dtype=torch.bool, device=device)
|
696 |
+
assert mask is not None
|
697 |
+
not_mask = ~mask
|
698 |
+
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
|
699 |
+
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
|
700 |
+
if self.normalize:
|
701 |
+
eps = 1e-6
|
702 |
+
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
|
703 |
+
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
|
704 |
+
|
705 |
+
dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats)
|
706 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
707 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
708 |
+
|
709 |
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
710 |
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
711 |
+
|
712 |
+
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
713 |
+
|
714 |
+
|
715 |
+
class MCLM(nn.Module):
|
716 |
+
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
|
717 |
+
super(MCLM, self).__init__()
|
718 |
+
self.attention = nn.ModuleList([
|
719 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
720 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
721 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
722 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
723 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
724 |
+
])
|
725 |
+
|
726 |
+
self.linear1 = nn.Linear(d_model, d_model * 2)
|
727 |
+
self.linear2 = nn.Linear(d_model * 2, d_model)
|
728 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
729 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
730 |
+
self.norm1 = nn.LayerNorm(d_model)
|
731 |
+
self.norm2 = nn.LayerNorm(d_model)
|
732 |
+
self.dropout = nn.Dropout(0.1)
|
733 |
+
self.dropout1 = nn.Dropout(0.1)
|
734 |
+
self.dropout2 = nn.Dropout(0.1)
|
735 |
+
self.activation = get_activation_fn('gelu')
|
736 |
+
self.pool_ratios = pool_ratios
|
737 |
+
self.p_poses = []
|
738 |
+
self.g_pos = None
|
739 |
+
self.positional_encoding = PositionEmbeddingSine(num_pos_feats=d_model // 2, normalize=True)
|
740 |
+
|
741 |
+
def forward(self, l, g):
|
742 |
+
"""
|
743 |
+
l: 4,c,h,w
|
744 |
+
g: 1,c,h,w
|
745 |
+
"""
|
746 |
+
self.p_poses = []
|
747 |
+
self.g_pos = None
|
748 |
+
b, c, h, w = l.size()
|
749 |
+
# 4,c,h,w -> 1,c,2h,2w
|
750 |
+
concated_locs = rearrange(l, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
|
751 |
+
|
752 |
+
pools = []
|
753 |
+
for pool_ratio in self.pool_ratios:
|
754 |
+
# b,c,h,w
|
755 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
756 |
+
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
|
757 |
+
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
|
758 |
+
if self.g_pos is None:
|
759 |
+
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2], pool.shape[3])
|
760 |
+
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
761 |
+
self.p_poses.append(pos_emb)
|
762 |
+
pools = torch.cat(pools, 0)
|
763 |
+
if self.g_pos is None:
|
764 |
+
self.p_poses = torch.cat(self.p_poses, dim=0)
|
765 |
+
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
|
766 |
+
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
767 |
+
|
768 |
+
device = pools.device
|
769 |
+
self.p_poses = self.p_poses.to(device)
|
770 |
+
self.g_pos = self.g_pos.to(device)
|
771 |
+
|
772 |
+
# attention between glb (q) & multisensory concated-locs (k,v)
|
773 |
+
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
|
774 |
+
|
775 |
+
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
|
776 |
+
g_hw_b_c = self.norm1(g_hw_b_c)
|
777 |
+
g_hw_b_c = g_hw_b_c + self.dropout2(self.linear2(self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
|
778 |
+
g_hw_b_c = self.norm2(g_hw_b_c)
|
779 |
+
|
780 |
+
# attention between origin locs (q) & freashed glb (k,v)
|
781 |
+
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
|
782 |
+
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
|
783 |
+
_g_hw_b_c = rearrange(_g_hw_b_c, "(ng h) (nw w) b c -> (h w) (ng nw b) c", ng=2, nw=2)
|
784 |
+
outputs_re = []
|
785 |
+
for i, (_l, _g) in enumerate(zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
|
786 |
+
outputs_re.append(self.attention[i + 1](_l, _g, _g)[0]) # (h w) 1 c
|
787 |
+
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
|
788 |
+
|
789 |
+
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
|
790 |
+
l_hw_b_c = self.norm1(l_hw_b_c)
|
791 |
+
l_hw_b_c = l_hw_b_c + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
|
792 |
+
l_hw_b_c = self.norm2(l_hw_b_c)
|
793 |
+
|
794 |
+
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
|
795 |
+
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
|
796 |
+
|
797 |
+
|
798 |
+
class MCRM(nn.Module):
|
799 |
+
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
|
800 |
+
super(MCRM, self).__init__()
|
801 |
+
self.attention = nn.ModuleList([
|
802 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
803 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
804 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
805 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
806 |
+
])
|
807 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
808 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
809 |
+
self.norm1 = nn.LayerNorm(d_model)
|
810 |
+
self.norm2 = nn.LayerNorm(d_model)
|
811 |
+
self.dropout = nn.Dropout(0.1)
|
812 |
+
self.dropout1 = nn.Dropout(0.1)
|
813 |
+
self.dropout2 = nn.Dropout(0.1)
|
814 |
+
self.sigmoid = nn.Sigmoid()
|
815 |
+
self.activation = get_activation_fn('gelu')
|
816 |
+
self.sal_conv = nn.Conv2d(d_model, 1, 1)
|
817 |
+
self.pool_ratios = pool_ratios
|
818 |
+
|
819 |
+
def forward(self, x):
|
820 |
+
device = x.device
|
821 |
+
b, c, h, w = x.size()
|
822 |
+
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
|
823 |
+
|
824 |
+
patched_glb = rearrange(glb, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
825 |
+
|
826 |
+
token_attention_map = self.sigmoid(self.sal_conv(glb))
|
827 |
+
token_attention_map = F.interpolate(token_attention_map, size=patches2image(loc).shape[-2:], mode='nearest')
|
828 |
+
loc = loc * rearrange(token_attention_map, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
829 |
+
|
830 |
+
pools = []
|
831 |
+
for pool_ratio in self.pool_ratios:
|
832 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
833 |
+
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
|
834 |
+
pools.append(rearrange(pool, 'nl c h w -> nl c (h w)')) # nl(4),c,hw
|
835 |
+
|
836 |
+
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
|
837 |
+
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
|
838 |
+
|
839 |
+
outputs = []
|
840 |
+
for i, q in enumerate(loc_.unbind(dim=0)): # traverse all local patches
|
841 |
+
v = pools[i]
|
842 |
+
k = v
|
843 |
+
outputs.append(self.attention[i](q, k, v)[0])
|
844 |
+
|
845 |
+
outputs = torch.cat(outputs, 1)
|
846 |
+
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
|
847 |
+
src = self.norm1(src)
|
848 |
+
src = src + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(src)).clone())))
|
849 |
+
src = self.norm2(src)
|
850 |
+
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
|
851 |
+
glb = glb + F.interpolate(patches2image(src), size=glb.shape[-2:], mode='nearest') # freshed glb
|
852 |
+
|
853 |
+
return torch.cat((src, glb), 0), token_attention_map
|
854 |
+
|
855 |
+
|
856 |
+
class BEN_Base(nn.Module):
|
857 |
+
def __init__(self):
|
858 |
+
super().__init__()
|
859 |
+
|
860 |
+
self.backbone = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
|
861 |
+
emb_dim = 128
|
862 |
+
self.sideout5 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
863 |
+
self.sideout4 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
864 |
+
self.sideout3 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
865 |
+
self.sideout2 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
866 |
+
self.sideout1 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
867 |
+
|
868 |
+
self.output5 = make_cbr(1024, emb_dim)
|
869 |
+
self.output4 = make_cbr(512, emb_dim)
|
870 |
+
self.output3 = make_cbr(256, emb_dim)
|
871 |
+
self.output2 = make_cbr(128, emb_dim)
|
872 |
+
self.output1 = make_cbr(128, emb_dim)
|
873 |
+
|
874 |
+
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
|
875 |
+
self.conv1 = make_cbr(emb_dim, emb_dim)
|
876 |
+
self.conv2 = make_cbr(emb_dim, emb_dim)
|
877 |
+
self.conv3 = make_cbr(emb_dim, emb_dim)
|
878 |
+
self.conv4 = make_cbr(emb_dim, emb_dim)
|
879 |
+
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
|
880 |
+
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
|
881 |
+
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
|
882 |
+
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
|
883 |
+
|
884 |
+
self.insmask_head = nn.Sequential(
|
885 |
+
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
|
886 |
+
nn.InstanceNorm2d(384),
|
887 |
+
nn.GELU(),
|
888 |
+
nn.Conv2d(384, 384, kernel_size=3, padding=1),
|
889 |
+
nn.InstanceNorm2d(384),
|
890 |
+
nn.GELU(),
|
891 |
+
nn.Conv2d(384, emb_dim, kernel_size=3, padding=1)
|
892 |
+
)
|
893 |
+
|
894 |
+
self.shallow = nn.Sequential(nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
|
895 |
+
self.upsample1 = make_cbg(emb_dim, emb_dim)
|
896 |
+
self.upsample2 = make_cbg(emb_dim, emb_dim)
|
897 |
+
self.output = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
898 |
+
|
899 |
+
for m in self.modules():
|
900 |
+
if isinstance(m, nn.GELU) or isinstance(m, nn.Dropout):
|
901 |
+
m.inplace = True
|
902 |
+
|
903 |
+
@torch.inference_mode()
|
904 |
+
@torch.autocast(device_type="cuda", dtype=torch.float16)
|
905 |
+
def forward(self, x):
|
906 |
+
real_batch = x.size(0)
|
907 |
+
|
908 |
+
shallow_batch = self.shallow(x)
|
909 |
+
glb_batch = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
|
910 |
+
|
911 |
+
final_input = None
|
912 |
+
for i in range(real_batch):
|
913 |
+
start = i * 4
|
914 |
+
end = (i + 1) * 4
|
915 |
+
loc_batch = image2patches(x[i, :, :, :].unsqueeze(dim=0))
|
916 |
+
input_ = torch.cat((loc_batch, glb_batch[i, :, :, :].unsqueeze(dim=0)), dim=0)
|
917 |
+
|
918 |
+
if final_input == None:
|
919 |
+
final_input = input_
|
920 |
+
else:
|
921 |
+
final_input = torch.cat((final_input, input_), dim=0)
|
922 |
+
|
923 |
+
features = self.backbone(final_input)
|
924 |
+
outputs = []
|
925 |
+
|
926 |
+
for i in range(real_batch):
|
927 |
+
start = i * 5
|
928 |
+
end = (i + 1) * 5
|
929 |
+
|
930 |
+
f4 = features[4][start:end, :, :, :] # shape: [5, C, H, W]
|
931 |
+
f3 = features[3][start:end, :, :, :]
|
932 |
+
f2 = features[2][start:end, :, :, :]
|
933 |
+
f1 = features[1][start:end, :, :, :]
|
934 |
+
f0 = features[0][start:end, :, :, :]
|
935 |
+
e5 = self.output5(f4)
|
936 |
+
e4 = self.output4(f3)
|
937 |
+
e3 = self.output3(f2)
|
938 |
+
e2 = self.output2(f1)
|
939 |
+
e1 = self.output1(f0)
|
940 |
+
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
|
941 |
+
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
|
942 |
+
|
943 |
+
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
|
944 |
+
e4 = self.conv4(e4)
|
945 |
+
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
|
946 |
+
e3 = self.conv3(e3)
|
947 |
+
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
|
948 |
+
e2 = self.conv2(e2)
|
949 |
+
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
|
950 |
+
e1 = self.conv1(e1)
|
951 |
+
|
952 |
+
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
|
953 |
+
|
954 |
+
output1_cat = patches2image(loc_e1) # (1,128,256,256)
|
955 |
+
|
956 |
+
# add glb feat in
|
957 |
+
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
|
958 |
+
# merge
|
959 |
+
final_output = self.insmask_head(output1_cat) # (1,128,256,256)
|
960 |
+
# shallow feature merge
|
961 |
+
shallow = shallow_batch[i, :, :, :].unsqueeze(dim=0)
|
962 |
+
final_output = final_output + resize_as(shallow, final_output)
|
963 |
+
final_output = self.upsample1(rescale_to(final_output))
|
964 |
+
final_output = rescale_to(final_output + resize_as(shallow, final_output))
|
965 |
+
final_output = self.upsample2(final_output)
|
966 |
+
final_output = self.output(final_output)
|
967 |
+
mask = final_output.sigmoid()
|
968 |
+
outputs.append(mask)
|
969 |
+
|
970 |
+
return torch.cat(outputs, dim=0)
|
971 |
+
|
972 |
+
def loadcheckpoints(self, model_path):
|
973 |
+
model_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
974 |
+
self.load_state_dict(model_dict['model_state_dict'], strict=True)
|
975 |
+
del model_path
|
976 |
+
|
977 |
+
def inference(self, image, refine_foreground=False):
|
978 |
+
|
979 |
+
# set_random_seed(9)
|
980 |
+
# image = ImageOps.exif_transpose(image)
|
981 |
+
if isinstance(image, Image.Image):
|
982 |
+
image, h, w, original_image = rgb_loader_refiner(image)
|
983 |
+
if torch.cuda.is_available():
|
984 |
+
|
985 |
+
img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device)
|
986 |
+
else:
|
987 |
+
img_tensor = img_transform32(image).unsqueeze(0).to(next(self.parameters()).device)
|
988 |
+
|
989 |
+
with torch.no_grad():
|
990 |
+
res = self.forward(img_tensor)
|
991 |
+
|
992 |
+
# Show Results
|
993 |
+
if refine_foreground == True:
|
994 |
+
|
995 |
+
pred_pil = transforms.ToPILImage()(res.squeeze())
|
996 |
+
image_masked = refine_foreground_process(original_image, pred_pil)
|
997 |
+
|
998 |
+
image_masked.putalpha(pred_pil.resize(original_image.size))
|
999 |
+
return image_masked
|
1000 |
+
|
1001 |
+
else:
|
1002 |
+
alpha = postprocess_image(res, im_size=[w, h])
|
1003 |
+
pred_pil = transforms.ToPILImage()(alpha)
|
1004 |
+
mask = pred_pil.resize(original_image.size)
|
1005 |
+
original_image.putalpha(mask)
|
1006 |
+
# mask = Image.fromarray(alpha)
|
1007 |
+
|
1008 |
+
# 将背景置为白色
|
1009 |
+
white_background = Image.new('RGB', original_image.size, (255, 255, 255))
|
1010 |
+
white_background.paste(original_image, mask=original_image.split()[3])
|
1011 |
+
original_image = white_background
|
1012 |
+
|
1013 |
+
return original_image
|
1014 |
+
|
1015 |
+
|
1016 |
+
else:
|
1017 |
+
foregrounds = []
|
1018 |
+
for batch in image:
|
1019 |
+
image, h, w, original_image = rgb_loader_refiner(batch)
|
1020 |
+
if torch.cuda.is_available():
|
1021 |
+
|
1022 |
+
img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device)
|
1023 |
+
else:
|
1024 |
+
img_tensor = img_transform32(image).unsqueeze(0).to(next(self.parameters()).device)
|
1025 |
+
|
1026 |
+
with torch.no_grad():
|
1027 |
+
res = self.forward(img_tensor)
|
1028 |
+
|
1029 |
+
if refine_foreground == True:
|
1030 |
+
|
1031 |
+
pred_pil = transforms.ToPILImage()(res.squeeze())
|
1032 |
+
image_masked = refine_foreground_process(original_image, pred_pil)
|
1033 |
+
|
1034 |
+
image_masked.putalpha(pred_pil.resize(original_image.size))
|
1035 |
+
|
1036 |
+
foregrounds.append(image_masked)
|
1037 |
+
else:
|
1038 |
+
alpha = postprocess_image(res, im_size=[w, h])
|
1039 |
+
pred_pil = transforms.ToPILImage()(alpha)
|
1040 |
+
mask = pred_pil.resize(original_image.size)
|
1041 |
+
original_image.putalpha(mask)
|
1042 |
+
# mask = Image.fromarray(alpha)
|
1043 |
+
foregrounds.append(original_image)
|
1044 |
+
|
1045 |
+
return foregrounds
|
1046 |
+
|
1047 |
+
def segment_video(self, video_path, output_path="./", fps=0, refine_foreground=False, batch=1,
|
1048 |
+
print_frames_processed=True, webm=False, rgb_value=(0, 255, 0)):
|
1049 |
+
|
1050 |
+
"""
|
1051 |
+
Segments the given video to extract the foreground (with alpha) from each frame
|
1052 |
+
and saves the result as either a WebM video (with alpha channel) or MP4 (with a
|
1053 |
+
color background).
|
1054 |
+
|
1055 |
+
Args:
|
1056 |
+
video_path (str):
|
1057 |
+
Path to the input video file.
|
1058 |
+
|
1059 |
+
output_path (str, optional):
|
1060 |
+
Directory (or full path) where the output video and/or files will be saved.
|
1061 |
+
Defaults to "./".
|
1062 |
+
|
1063 |
+
fps (int, optional):
|
1064 |
+
The frames per second (FPS) to use for the output video. If 0 (default), the
|
1065 |
+
original FPS of the input video is used. Otherwise, overrides it.
|
1066 |
+
|
1067 |
+
refine_foreground (bool, optional):
|
1068 |
+
Whether to run an additional “refine foreground” process on each frame.
|
1069 |
+
Defaults to False.
|
1070 |
+
|
1071 |
+
batch (int, optional):
|
1072 |
+
Number of frames to process at once (inference batch size). Large batch sizes
|
1073 |
+
may require more GPU memory. Defaults to 1.
|
1074 |
+
|
1075 |
+
print_frames_processed (bool, optional):
|
1076 |
+
If True (default), prints progress (how many frames have been processed) to
|
1077 |
+
the console.
|
1078 |
+
|
1079 |
+
webm (bool, optional):
|
1080 |
+
If True (default), exports a WebM video with alpha channel (VP9 / yuva420p).
|
1081 |
+
If False, exports an MP4 video composited over a solid color background.
|
1082 |
+
|
1083 |
+
rgb_value (tuple, optional):
|
1084 |
+
The RGB background color (e.g., green screen) used to composite frames when
|
1085 |
+
saving to MP4. Defaults to (0, 255, 0).
|
1086 |
+
|
1087 |
+
Returns:
|
1088 |
+
None. Writes the output video(s) to disk in the specified format.
|
1089 |
+
"""
|
1090 |
+
|
1091 |
+
cap = cv2.VideoCapture(video_path)
|
1092 |
+
if not cap.isOpened():
|
1093 |
+
raise IOError(f"Cannot open video: {video_path}")
|
1094 |
+
|
1095 |
+
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
1096 |
+
original_fps = 30 if original_fps == 0 else original_fps
|
1097 |
+
fps = original_fps if fps == 0 else fps
|
1098 |
+
|
1099 |
+
ret, first_frame = cap.read()
|
1100 |
+
if not ret:
|
1101 |
+
raise ValueError("No frames found in the video.")
|
1102 |
+
height, width = first_frame.shape[:2]
|
1103 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
|
1104 |
+
|
1105 |
+
foregrounds = []
|
1106 |
+
frame_idx = 0
|
1107 |
+
processed_count = 0
|
1108 |
+
batch_frames = []
|
1109 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
1110 |
+
|
1111 |
+
while True:
|
1112 |
+
ret, frame = cap.read()
|
1113 |
+
if not ret:
|
1114 |
+
if batch_frames:
|
1115 |
+
batch_results = self.inference(batch_frames, refine_foreground)
|
1116 |
+
if isinstance(batch_results, Image.Image):
|
1117 |
+
foregrounds.append(batch_results)
|
1118 |
+
else:
|
1119 |
+
foregrounds.extend(batch_results)
|
1120 |
+
if print_frames_processed:
|
1121 |
+
print(f"Processed frames {frame_idx - len(batch_frames) + 1} to {frame_idx} of {total_frames}")
|
1122 |
+
break
|
1123 |
+
|
1124 |
+
# Process every frame instead of using intervals
|
1125 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
1126 |
+
pil_frame = Image.fromarray(frame_rgb)
|
1127 |
+
batch_frames.append(pil_frame)
|
1128 |
+
|
1129 |
+
if len(batch_frames) == batch:
|
1130 |
+
batch_results = self.inference(batch_frames, refine_foreground)
|
1131 |
+
if isinstance(batch_results, Image.Image):
|
1132 |
+
foregrounds.append(batch_results)
|
1133 |
+
else:
|
1134 |
+
foregrounds.extend(batch_results)
|
1135 |
+
if print_frames_processed:
|
1136 |
+
print(f"Processed frames {frame_idx - batch + 1} to {frame_idx} of {total_frames}")
|
1137 |
+
batch_frames = []
|
1138 |
+
processed_count += batch
|
1139 |
+
|
1140 |
+
frame_idx += 1
|
1141 |
+
|
1142 |
+
if webm:
|
1143 |
+
alpha_webm_path = os.path.join(output_path, "foreground.webm")
|
1144 |
+
pil_images_to_webm_alpha(foregrounds, alpha_webm_path, fps=original_fps)
|
1145 |
+
|
1146 |
+
else:
|
1147 |
+
cap.release()
|
1148 |
+
fg_output = os.path.join(output_path, 'foreground.mp4')
|
1149 |
+
|
1150 |
+
pil_images_to_mp4(foregrounds, fg_output, fps=original_fps, rgb_value=rgb_value)
|
1151 |
+
cv2.destroyAllWindows()
|
1152 |
+
|
1153 |
+
try:
|
1154 |
+
fg_audio_output = os.path.join(output_path, 'foreground_output_with_audio.mp4')
|
1155 |
+
add_audio_to_video(fg_output, video_path, fg_audio_output)
|
1156 |
+
except Exception as e:
|
1157 |
+
print("No audio found in the original video")
|
1158 |
+
print(e)
|
1159 |
+
|
1160 |
+
|
1161 |
+
def rgb_loader_refiner(original_image):
|
1162 |
+
h, w = original_image.size
|
1163 |
+
|
1164 |
+
image = original_image
|
1165 |
+
# Convert to RGB if necessary
|
1166 |
+
if image.mode != 'RGB':
|
1167 |
+
image = image.convert('RGB')
|
1168 |
+
|
1169 |
+
# Resize the image
|
1170 |
+
image = image.resize((1024, 1024), resample=Image.LANCZOS)
|
1171 |
+
|
1172 |
+
return image.convert('RGB'), h, w, original_image
|
1173 |
+
|
1174 |
+
|
1175 |
+
# Define the image transformation
|
1176 |
+
img_transform = transforms.Compose([
|
1177 |
+
transforms.ToTensor(),
|
1178 |
+
transforms.ConvertImageDtype(torch.float16),
|
1179 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
1180 |
+
])
|
1181 |
+
|
1182 |
+
img_transform32 = transforms.Compose([
|
1183 |
+
transforms.ToTensor(),
|
1184 |
+
transforms.ConvertImageDtype(torch.float32),
|
1185 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
1186 |
+
])
|
1187 |
+
|
1188 |
+
|
1189 |
+
def pil_images_to_mp4(images, output_path, fps=24, rgb_value=(0, 255, 0)):
|
1190 |
+
"""
|
1191 |
+
Converts an array of PIL images to an MP4 video.
|
1192 |
+
|
1193 |
+
Args:
|
1194 |
+
images: List of PIL images
|
1195 |
+
output_path: Path to save the MP4 file
|
1196 |
+
fps: Frames per second (default: 24)
|
1197 |
+
rgb_value: Background RGB color tuple (default: green (0, 255, 0))
|
1198 |
+
"""
|
1199 |
+
if not images:
|
1200 |
+
raise ValueError("No images provided to convert to MP4.")
|
1201 |
+
|
1202 |
+
width, height = images[0].size
|
1203 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
1204 |
+
video_writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
1205 |
+
|
1206 |
+
for image in images:
|
1207 |
+
# If image has alpha channel, composite onto the specified background color
|
1208 |
+
if image.mode == 'RGBA':
|
1209 |
+
# Create background image with specified RGB color
|
1210 |
+
background = Image.new('RGB', image.size, rgb_value)
|
1211 |
+
background = background.convert('RGBA')
|
1212 |
+
# Composite the image onto the background
|
1213 |
+
image = Image.alpha_composite(background, image)
|
1214 |
+
image = image.convert('RGB')
|
1215 |
+
else:
|
1216 |
+
# Ensure RGB format for non-alpha images
|
1217 |
+
image = image.convert('RGB')
|
1218 |
+
|
1219 |
+
# Convert to OpenCV format and write
|
1220 |
+
open_cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
1221 |
+
video_writer.write(open_cv_image)
|
1222 |
+
|
1223 |
+
video_writer.release()
|
1224 |
+
|
1225 |
+
|
1226 |
+
def pil_images_to_webm_alpha(images, output_path, fps=30):
|
1227 |
+
"""
|
1228 |
+
Converts a list of PIL RGBA images to a VP9 .webm video with alpha channel.
|
1229 |
+
|
1230 |
+
NOTE: Not all players will display alpha in WebM.
|
1231 |
+
Browsers like Chrome/Firefox typically do support VP9 alpha.
|
1232 |
+
"""
|
1233 |
+
if not images:
|
1234 |
+
raise ValueError("No images provided for WebM with alpha.")
|
1235 |
+
|
1236 |
+
# Ensure output directory exists
|
1237 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
1238 |
+
|
1239 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
1240 |
+
# Save frames as PNG (with alpha)
|
1241 |
+
for idx, img in enumerate(images):
|
1242 |
+
if img.mode != "RGBA":
|
1243 |
+
img = img.convert("RGBA")
|
1244 |
+
out_path = os.path.join(tmpdir, f"{idx:06d}.png")
|
1245 |
+
img.save(out_path, "PNG")
|
1246 |
+
|
1247 |
+
# Construct ffmpeg command
|
1248 |
+
# -c:v libvpx-vp9 => VP9 encoder
|
1249 |
+
# -pix_fmt yuva420p => alpha-enabled pixel format
|
1250 |
+
# -auto-alt-ref 0 => helps preserve alpha frames (libvpx quirk)
|
1251 |
+
ffmpeg_cmd = [
|
1252 |
+
"ffmpeg", "-y",
|
1253 |
+
"-framerate", str(fps),
|
1254 |
+
"-i", os.path.join(tmpdir, "%06d.png"),
|
1255 |
+
"-c:v", "libvpx-vp9",
|
1256 |
+
"-pix_fmt", "yuva420p",
|
1257 |
+
"-auto-alt-ref", "0",
|
1258 |
+
output_path
|
1259 |
+
]
|
1260 |
+
|
1261 |
+
subprocess.run(ffmpeg_cmd, check=True)
|
1262 |
+
|
1263 |
+
print(f"WebM with alpha saved to {output_path}")
|
1264 |
+
|
1265 |
+
|
1266 |
+
def add_audio_to_video(video_without_audio_path, original_video_path, output_path):
|
1267 |
+
"""
|
1268 |
+
Check if the original video has an audio stream. If yes, add it. If not, skip.
|
1269 |
+
"""
|
1270 |
+
# 1) Probe original video for audio streams
|
1271 |
+
probe_command = [
|
1272 |
+
'ffprobe', '-v', 'error',
|
1273 |
+
'-select_streams', 'a:0',
|
1274 |
+
'-show_entries', 'stream=index',
|
1275 |
+
'-of', 'csv=p=0',
|
1276 |
+
original_video_path
|
1277 |
+
]
|
1278 |
+
result = subprocess.run(probe_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
1279 |
+
|
1280 |
+
# result.stdout is empty if no audio stream found
|
1281 |
+
if not result.stdout.strip():
|
1282 |
+
print("No audio track found in original video, skipping audio addition.")
|
1283 |
+
return
|
1284 |
+
|
1285 |
+
print("Audio track detected; proceeding to mux audio.")
|
1286 |
+
# 2) If audio found, run ffmpeg to add it
|
1287 |
+
command = [
|
1288 |
+
'ffmpeg', '-y',
|
1289 |
+
'-i', video_without_audio_path,
|
1290 |
+
'-i', original_video_path,
|
1291 |
+
'-c', 'copy',
|
1292 |
+
'-map', '0:v:0',
|
1293 |
+
'-map', '1:a:0', # we know there's an audio track now
|
1294 |
+
output_path
|
1295 |
+
]
|
1296 |
+
subprocess.run(command, check=True)
|
1297 |
+
print(f"Audio added successfully => {output_path}")
|
1298 |
+
|
1299 |
+
|
1300 |
+
### Thanks to the source: https://huggingface.co/ZhengPeng7/BiRefNet/blob/main/handler.py
|
1301 |
+
def refine_foreground_process(image, mask, r=90):
|
1302 |
+
if mask.size != image.size:
|
1303 |
+
mask = mask.resize(image.size)
|
1304 |
+
image = np.array(image) / 255.0
|
1305 |
+
mask = np.array(mask) / 255.0
|
1306 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
|
1307 |
+
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
1308 |
+
return image_masked
|
1309 |
+
|
1310 |
+
|
1311 |
+
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
1312 |
+
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
1313 |
+
alpha = alpha[:, :, None]
|
1314 |
+
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
|
1315 |
+
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
1316 |
+
|
1317 |
+
|
1318 |
+
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
1319 |
+
if isinstance(image, Image.Image):
|
1320 |
+
image = np.array(image) / 255.0
|
1321 |
+
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
1322 |
+
|
1323 |
+
blurred_FA = cv2.blur(F * alpha, (r, r))
|
1324 |
+
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
1325 |
+
|
1326 |
+
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
1327 |
+
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
1328 |
+
F = blurred_F + alpha * \
|
1329 |
+
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
1330 |
+
F = np.clip(F, 0, 1)
|
1331 |
+
return F, blurred_B
|
1332 |
+
|
1333 |
+
|
1334 |
+
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
|
1335 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0)
|
1336 |
+
ma = torch.max(result)
|
1337 |
+
mi = torch.min(result)
|
1338 |
+
result = (result - mi) / (ma - mi)
|
1339 |
+
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
|
1340 |
+
im_array = np.squeeze(im_array)
|
1341 |
+
return im_array
|
1342 |
+
|
1343 |
+
|
1344 |
+
def rgb_loader_refiner(original_image):
|
1345 |
+
h, w = original_image.size
|
1346 |
+
# # Apply EXIF orientation
|
1347 |
+
|
1348 |
+
image = ImageOps.exif_transpose(original_image)
|
1349 |
+
|
1350 |
+
if original_image.mode != 'RGB':
|
1351 |
+
original_image = original_image.convert('RGB')
|
1352 |
+
|
1353 |
+
image = original_image
|
1354 |
+
# Convert to RGB if necessary
|
1355 |
+
|
1356 |
+
# Resize the image
|
1357 |
+
image = image.resize((1024, 1024), resample=Image.LANCZOS)
|
1358 |
+
|
1359 |
+
return image, h, w, original_image
|