Spaces:
Runtime error
Runtime error
File size: 6,763 Bytes
d4c1bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
from typing import Optional
import torch.nn as nn
import torch
import torch.nn.functional as F
from diffusers.models.embeddings import apply_rotary_emb
from einops import rearrange
from .norm_layer import RMSNorm
class FluxIPAttnProcessor(nn.Module):
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(
self,
hidden_size=None,
ip_hidden_states_dim=None,
):
super().__init__()
self.norm_ip_q = RMSNorm(128, eps=1e-6)
self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size)
self.norm_ip_k = RMSNorm(128, eps=1e-6)
self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size)
def __call__(
self,
attn,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
emb_dict={},
subject_emb_dict={},
*args,
**kwargs,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# IPadapter
ip_hidden_states = self._get_ip_hidden_states(
attn,
query if encoder_hidden_states is not None else query[:, emb_dict['length_encoder_hidden_states']:],
subject_emb_dict.get('ip_hidden_states', None)
)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
if ip_hidden_states is not None:
hidden_states = hidden_states + ip_hidden_states * subject_emb_dict.get('scale', 1.0)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
if ip_hidden_states is not None:
hidden_states[:, emb_dict['length_encoder_hidden_states']:] = \
hidden_states[:, emb_dict['length_encoder_hidden_states']:] + \
ip_hidden_states * subject_emb_dict.get('scale', 1.0)
return hidden_states
def _scaled_dot_product_attention(self, query, key, value, attention_mask=None, heads=None):
query = rearrange(query, '(b h) l c -> b h l c', h=heads)
key = rearrange(key, '(b h) l c -> b h l c', h=heads)
value = rearrange(value, '(b h) l c -> b h l c', h=heads)
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
hidden_states = rearrange(hidden_states, 'b h l c -> (b h) l c', h=heads)
hidden_states = hidden_states.to(query)
return hidden_states
def _get_ip_hidden_states(
self,
attn,
img_query,
ip_hidden_states,
):
if ip_hidden_states is None:
return None
if not hasattr(self, 'to_k_ip') or not hasattr(self, 'to_v_ip'):
return None
ip_query = self.norm_ip_q(rearrange(img_query, 'b l (h d) -> b h l d', h=attn.heads))
ip_query = rearrange(ip_query, 'b h l d -> (b h) l d')
ip_key = self.to_k_ip(ip_hidden_states)
ip_key = self.norm_ip_k(rearrange(ip_key, 'b l (h d) -> b h l d', h=attn.heads))
ip_key = rearrange(ip_key, 'b h l d -> (b h) l d')
ip_value = self.to_v_ip(ip_hidden_states)
ip_value = attn.head_to_batch_dim(ip_value)
ip_hidden_states = self._scaled_dot_product_attention(
ip_query.to(ip_value.dtype), ip_key.to(ip_value.dtype), ip_value, None, attn.heads)
ip_hidden_states = ip_hidden_states.to(img_query.dtype)
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
return ip_hidden_states
|