File size: 1,450 Bytes
d4c1bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch.nn as nn
import torch

class RMSNorm(nn.Module):
    def __init__(self, d, p=-1., eps=1e-8, bias=False):
        """
            Root Mean Square Layer Normalization
        :param d: model size
        :param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled)
        :param eps:  epsilon value, default 1e-8
        :param bias: whether use bias term for RMSNorm, disabled by
            default because RMSNorm doesn't enforce re-centering invariance.
        """
        super(RMSNorm, self).__init__()

        self.eps = eps
        self.d = d
        self.p = p
        self.bias = bias

        self.scale = nn.Parameter(torch.ones(d))
        self.register_parameter("scale", self.scale)

        if self.bias:
            self.offset = nn.Parameter(torch.zeros(d))
            self.register_parameter("offset", self.offset)

    def forward(self, x):
        if self.p < 0. or self.p > 1.:
            norm_x = x.norm(2, dim=-1, keepdim=True)
            d_x = self.d
        else:
            partial_size = int(self.d * self.p)
            partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1)

            norm_x = partial_x.norm(2, dim=-1, keepdim=True)
            d_x = partial_size

        rms_x = norm_x * d_x ** (-1. / 2)
        x_normed = x / (rms_x + self.eps)

        if self.bias:
            return self.scale * x_normed + self.offset

        return self.scale * x_normed