Spaces:
Runtime error
Runtime error
from safetensors.torch import load_file | |
import torch | |
from tqdm import tqdm | |
__all__ = [ | |
'flux_load_lora' | |
] | |
def is_int(d): | |
try: | |
d = int(d) | |
return True | |
except Exception as e: | |
return False | |
def flux_load_lora(self, lora_file, lora_weight=1.0): | |
device = self.transformer.device | |
# DiT 部分 | |
state_dict, network_alphas = self.lora_state_dict(lora_file, return_alphas=True) | |
state_dict = {k:v.to(device) for k,v in state_dict.items()} | |
model = self.transformer | |
keys = list(state_dict.keys()) | |
keys = [k for k in keys if k.startswith('transformer.')] | |
for k_lora in tqdm(keys, total=len(keys), desc=f"loading lora in transformer ..."): | |
v_lora = state_dict[k_lora] | |
# 非 up 的都跳过 | |
if '.lora_A.weight' in k_lora: | |
continue | |
if '.alpha' in k_lora: | |
continue | |
k_lora_name = k_lora.replace("transformer.", "") | |
k_lora_name = k_lora_name.replace(".lora_B.weight", "") | |
attr_name_list = k_lora_name.split('.') | |
cur_attr = model | |
latest_attr_name = '' | |
for idx in range(0, len(attr_name_list)): | |
attr_name = attr_name_list[idx] | |
if is_int(attr_name): | |
cur_attr = cur_attr[int(attr_name)] | |
latest_attr_name = '' | |
else: | |
try: | |
if latest_attr_name != '': | |
cur_attr = cur_attr.__getattr__(f"{latest_attr_name}.{attr_name}") | |
else: | |
cur_attr = cur_attr.__getattr__(attr_name) | |
latest_attr_name = '' | |
except Exception as e: | |
if latest_attr_name != '': | |
latest_attr_name = f"{latest_attr_name}.{attr_name}" | |
else: | |
latest_attr_name = attr_name | |
up_w = v_lora | |
down_w = state_dict[k_lora.replace('.lora_B.weight', '.lora_A.weight')] | |
# 赋值 | |
einsum_a = f"ijabcdefg" | |
einsum_b = f"jkabcdefg" | |
einsum_res = f"ikabcdefg" | |
length_shape = len(up_w.shape) | |
einsum_str = f"{einsum_a[:length_shape]},{einsum_b[:length_shape]}->{einsum_res[:length_shape]}" | |
dtype = cur_attr.weight.data.dtype | |
d_w = torch.einsum(einsum_str, up_w.to(torch.float32), down_w.to(torch.float32)).to(dtype) | |
cur_attr.weight.data = cur_attr.weight.data + d_w * lora_weight | |
# text encoder 部分 | |
raw_state_dict = load_file(lora_file) | |
raw_state_dict = {k:v.to(device) for k,v in raw_state_dict.items()} | |
# text encoder | |
state_dict = {k:v for k,v in raw_state_dict.items() if 'lora_te1_' in k} | |
model = self.text_encoder | |
keys = list(state_dict.keys()) | |
keys = [k for k in keys if k.startswith('lora_te1_')] | |
for k_lora in tqdm(keys, total=len(keys), desc=f"loading lora in text_encoder ..."): | |
v_lora = state_dict[k_lora] | |
# 非 up 的都跳过 | |
if '.lora_down.weight' in k_lora: | |
continue | |
if '.alpha' in k_lora: | |
continue | |
k_lora_name = k_lora.replace("lora_te1_", "") | |
k_lora_name = k_lora_name.replace(".lora_up.weight", "") | |
attr_name_list = k_lora_name.split('_') | |
cur_attr = model | |
latest_attr_name = '' | |
for idx in range(0, len(attr_name_list)): | |
attr_name = attr_name_list[idx] | |
if is_int(attr_name): | |
cur_attr = cur_attr[int(attr_name)] | |
latest_attr_name = '' | |
else: | |
try: | |
if latest_attr_name != '': | |
cur_attr = cur_attr.__getattr__(f"{latest_attr_name}_{attr_name}") | |
else: | |
cur_attr = cur_attr.__getattr__(attr_name) | |
latest_attr_name = '' | |
except Exception as e: | |
if latest_attr_name != '': | |
latest_attr_name = f"{latest_attr_name}_{attr_name}" | |
else: | |
latest_attr_name = attr_name | |
up_w = v_lora | |
down_w = state_dict[k_lora.replace('.lora_up.weight', '.lora_down.weight')] | |
alpha = state_dict.get(k_lora.replace('.lora_up.weight', '.alpha'), None) | |
if alpha is None: | |
lora_scale = 1 | |
else: | |
rank = up_w.shape[1] | |
lora_scale = alpha / rank | |
# 赋值 | |
einsum_a = f"ijabcdefg" | |
einsum_b = f"jkabcdefg" | |
einsum_res = f"ikabcdefg" | |
length_shape = len(up_w.shape) | |
einsum_str = f"{einsum_a[:length_shape]},{einsum_b[:length_shape]}->{einsum_res[:length_shape]}" | |
dtype = cur_attr.weight.data.dtype | |
d_w = torch.einsum(einsum_str, up_w.to(torch.float32), down_w.to(torch.float32)).to(dtype) | |
cur_attr.weight.data = cur_attr.weight.data + d_w * lora_scale * lora_weight | |