wangqixun's picture
Upload 5 files
d4c1bb7 verified
from safetensors.torch import load_file
import torch
from tqdm import tqdm
__all__ = [
'flux_load_lora'
]
def is_int(d):
try:
d = int(d)
return True
except Exception as e:
return False
def flux_load_lora(self, lora_file, lora_weight=1.0):
device = self.transformer.device
# DiT 部分
state_dict, network_alphas = self.lora_state_dict(lora_file, return_alphas=True)
state_dict = {k:v.to(device) for k,v in state_dict.items()}
model = self.transformer
keys = list(state_dict.keys())
keys = [k for k in keys if k.startswith('transformer.')]
for k_lora in tqdm(keys, total=len(keys), desc=f"loading lora in transformer ..."):
v_lora = state_dict[k_lora]
# 非 up 的都跳过
if '.lora_A.weight' in k_lora:
continue
if '.alpha' in k_lora:
continue
k_lora_name = k_lora.replace("transformer.", "")
k_lora_name = k_lora_name.replace(".lora_B.weight", "")
attr_name_list = k_lora_name.split('.')
cur_attr = model
latest_attr_name = ''
for idx in range(0, len(attr_name_list)):
attr_name = attr_name_list[idx]
if is_int(attr_name):
cur_attr = cur_attr[int(attr_name)]
latest_attr_name = ''
else:
try:
if latest_attr_name != '':
cur_attr = cur_attr.__getattr__(f"{latest_attr_name}.{attr_name}")
else:
cur_attr = cur_attr.__getattr__(attr_name)
latest_attr_name = ''
except Exception as e:
if latest_attr_name != '':
latest_attr_name = f"{latest_attr_name}.{attr_name}"
else:
latest_attr_name = attr_name
up_w = v_lora
down_w = state_dict[k_lora.replace('.lora_B.weight', '.lora_A.weight')]
# 赋值
einsum_a = f"ijabcdefg"
einsum_b = f"jkabcdefg"
einsum_res = f"ikabcdefg"
length_shape = len(up_w.shape)
einsum_str = f"{einsum_a[:length_shape]},{einsum_b[:length_shape]}->{einsum_res[:length_shape]}"
dtype = cur_attr.weight.data.dtype
d_w = torch.einsum(einsum_str, up_w.to(torch.float32), down_w.to(torch.float32)).to(dtype)
cur_attr.weight.data = cur_attr.weight.data + d_w * lora_weight
# text encoder 部分
raw_state_dict = load_file(lora_file)
raw_state_dict = {k:v.to(device) for k,v in raw_state_dict.items()}
# text encoder
state_dict = {k:v for k,v in raw_state_dict.items() if 'lora_te1_' in k}
model = self.text_encoder
keys = list(state_dict.keys())
keys = [k for k in keys if k.startswith('lora_te1_')]
for k_lora in tqdm(keys, total=len(keys), desc=f"loading lora in text_encoder ..."):
v_lora = state_dict[k_lora]
# 非 up 的都跳过
if '.lora_down.weight' in k_lora:
continue
if '.alpha' in k_lora:
continue
k_lora_name = k_lora.replace("lora_te1_", "")
k_lora_name = k_lora_name.replace(".lora_up.weight", "")
attr_name_list = k_lora_name.split('_')
cur_attr = model
latest_attr_name = ''
for idx in range(0, len(attr_name_list)):
attr_name = attr_name_list[idx]
if is_int(attr_name):
cur_attr = cur_attr[int(attr_name)]
latest_attr_name = ''
else:
try:
if latest_attr_name != '':
cur_attr = cur_attr.__getattr__(f"{latest_attr_name}_{attr_name}")
else:
cur_attr = cur_attr.__getattr__(attr_name)
latest_attr_name = ''
except Exception as e:
if latest_attr_name != '':
latest_attr_name = f"{latest_attr_name}_{attr_name}"
else:
latest_attr_name = attr_name
up_w = v_lora
down_w = state_dict[k_lora.replace('.lora_up.weight', '.lora_down.weight')]
alpha = state_dict.get(k_lora.replace('.lora_up.weight', '.alpha'), None)
if alpha is None:
lora_scale = 1
else:
rank = up_w.shape[1]
lora_scale = alpha / rank
# 赋值
einsum_a = f"ijabcdefg"
einsum_b = f"jkabcdefg"
einsum_res = f"ikabcdefg"
length_shape = len(up_w.shape)
einsum_str = f"{einsum_a[:length_shape]},{einsum_b[:length_shape]}->{einsum_res[:length_shape]}"
dtype = cur_attr.weight.data.dtype
d_w = torch.einsum(einsum_str, up_w.to(torch.float32), down_w.to(torch.float32)).to(dtype)
cur_attr.weight.data = cur_attr.weight.data + d_w * lora_scale * lora_weight