''' sudo apt-get update && sudo apt-get install git-lfs cbm ffmpeg huggingface-cli login ''' import sys sys.path.append('../') import spaces import torch import random import numpy as np from PIL import Image import gradio as gr from huggingface_hub import hf_hub_download from transformers import AutoModelForImageSegmentation from torchvision import transforms from pipeline import InstantCharacterFluxPipeline # global variable MAX_SEED = np.iinfo(np.int32).max device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 # pre-trained weights ip_adapter_path = hf_hub_download(repo_id="tencent/InstantCharacter", filename="instantcharacter_ip-adapter.bin") base_model = 'black-forest-labs/FLUX.1-dev' image_encoder_path = 'google/siglip-so400m-patch14-384' image_encoder_2_path = 'facebook/dinov2-giant' birefnet_path = 'ZhengPeng7/BiRefNet' makoto_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Makoto-Shinkai", filename="Makoto_Shinkai_style.safetensors") ghibli_style_lora_path = hf_hub_download(repo_id="InstantX/FLUX.1-dev-LoRA-Ghibli", filename="ghibli_style.safetensors") # init InstantCharacter pipeline pipe = InstantCharacterFluxPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) pipe.to(device) # load InstantCharacter pipe.init_adapter( image_encoder_path=image_encoder_path, image_encoder_2_path=image_encoder_2_path, subject_ipadapter_cfg=dict(subject_ip_adapter_path=ip_adapter_path, nb_token=1024), ) #pipe.enable_sequential_cpu_offload() # load matting model birefnet = AutoModelForImageSegmentation.from_pretrained(birefnet_path, trust_remote_code=True) birefnet.to('cuda') birefnet.eval() birefnet_transform_image = transforms.Compose([ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) def remove_bkg(subject_image): def infer_matting(img_pil): input_images = birefnet_transform_image(img_pil).unsqueeze(0).to('cuda') with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(img_pil.size) mask = np.array(mask) mask = mask[..., None] return mask def get_bbox_from_mask(mask, th=128): height, width = mask.shape[:2] x1, y1, x2, y2 = 0, 0, width - 1, height - 1 sample = np.max(mask, axis=0) for idx in range(width): if sample[idx] >= th: x1 = idx break sample = np.max(mask[:, ::-1], axis=0) for idx in range(width): if sample[idx] >= th: x2 = width - 1 - idx break sample = np.max(mask, axis=1) for idx in range(height): if sample[idx] >= th: y1 = idx break sample = np.max(mask[::-1], axis=1) for idx in range(height): if sample[idx] >= th: y2 = height - 1 - idx break x1 = np.clip(x1, 0, width-1).round().astype(np.int32) y1 = np.clip(y1, 0, height-1).round().astype(np.int32) x2 = np.clip(x2, 0, width-1).round().astype(np.int32) y2 = np.clip(y2, 0, height-1).round().astype(np.int32) return [x1, y1, x2, y2] def pad_to_square(image, pad_value = 255, random = False): ''' image: np.array [h, w, 3] ''' H,W = image.shape[0], image.shape[1] if H == W: return image padd = abs(H - W) if random: padd_1 = int(np.random.randint(0,padd)) else: padd_1 = int(padd / 2) padd_2 = padd - padd_1 if H > W: pad_param = ((0,0),(padd_1,padd_2),(0,0)) else: pad_param = ((padd_1,padd_2),(0,0),(0,0)) image = np.pad(image, pad_param, 'constant', constant_values=pad_value) return image salient_object_mask = infer_matting(subject_image)[..., 0] x1, y1, x2, y2 = get_bbox_from_mask(salient_object_mask) subject_image = np.array(subject_image) salient_object_mask[salient_object_mask > 128] = 255 salient_object_mask[salient_object_mask < 128] = 0 sample_mask = np.concatenate([salient_object_mask[..., None]]*3, axis=2) obj_image = sample_mask / 255 * subject_image + (1 - sample_mask / 255) * 255 crop_obj_image = obj_image[y1:y2, x1:x2] crop_pad_obj_image = pad_to_square(crop_obj_image, 255) subject_image = Image.fromarray(crop_pad_obj_image.astype(np.uint8)) return subject_image def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def get_example(): case = [ [ "./assets/girl.jpg", "A girl is playing a guitar in street", 0.9, 'Makoto Shinkai style', ], [ "./assets/boy.jpg", "A boy is riding a bike in snow", 0.9, 'Makoto Shinkai style', ], ] return case def run_for_examples(source_image, prompt, scale, style_mode): return create_image( input_image=source_image, prompt=prompt, scale=scale, guidance_scale=3.5, num_inference_steps=28, seed=123456, style_mode=style_mode, ) @spaces.GPU def create_image(input_image, prompt, scale, guidance_scale, num_inference_steps, seed, style_mode=None): input_image = remove_bkg(input_image) if style_mode is None: images = pipe( prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, width=1024, height=1024, subject_image=input_image, subject_scale=scale, generator=torch.manual_seed(seed), ).images else: if style_mode == 'Makoto Shinkai style': lora_file_path = makoto_style_lora_path trigger = 'Makoto Shinkai style' elif style_mode == 'Ghibli style': lora_file_path = ghibli_style_lora_path trigger = 'ghibli style' images = pipe.with_style_lora( lora_file_path=lora_file_path, trigger=trigger, prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, width=1024, height=1024, subject_image=input_image, subject_scale=scale, generator=torch.manual_seed(seed), ).images return images # Description title = r"""

InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework

""" description = r""" Official 🤗 Gradio demo for InstantCharacter : Personalize Any Characters with a Scalable Diffusion Transformer Framework.
How to use:
1. Upload a character image, removing background would be preferred. 2. Enter a text prompt to describe what you hope the chracter does. 3. Click the Submit button to begin customization. 4. Share your custimized photo with your friends and enjoy! 😊 """ article = r""" --- 📝 **Citation**
If our work is helpful for your research or applications, please cite us via: ```bibtex TBD ``` 📧 **Contact**
If you have any questions, please feel free to open an issue. """ block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False) with block: # description gr.Markdown(title) gr.Markdown(description) with gr.Tabs(): with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): image_pil = gr.Image(label="Source Image", type='pil') prompt = gr.Textbox(label="Prompt", value="a character is riding a bike in snow") scale = gr.Slider(minimum=0, maximum=1.5, step=0.01,value=1.0, label="Scale") style_mode = gr.Dropdown(label='Style', choices=[None, 'Makoto Shinkai style', 'Ghibli style'], value='Makoto Shinkai style') with gr.Accordion(open=False, label="Advanced Options"): guidance_scale = gr.Slider(minimum=1,maximum=7.0, step=0.01,value=3.5, label="guidance scale") num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=28, label="num inference steps") seed = gr.Slider(minimum=-1000000, maximum=1000000, value=123456, step=1, label="Seed Value") randomize_seed = gr.Checkbox(label="Randomize seed", value=True) generate_button = gr.Button("Generate Image") with gr.Column(): generated_image = gr.Gallery(label="Generated Image") generate_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=create_image, inputs=[image_pil, prompt, scale, guidance_scale, num_inference_steps, seed, style_mode, ], outputs=[generated_image]) gr.Examples( examples=get_example(), inputs=[image_pil, prompt, scale, style_mode], fn=run_for_examples, outputs=[generated_image], cache_examples=True, ) gr.Markdown(article) block.launch(share = True)