import torch.nn as nn import torch import math from diffusers.models.transformers.transformer_2d import BasicTransformerBlock from diffusers.models.embeddings import Timesteps, TimestepEmbedding from timm.models.vision_transformer import Mlp from .norm_layer import RMSNorm # FFN def FeedForward(dim, mult=4): inner_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim, bias=False), nn.GELU(), nn.Linear(inner_dim, dim, bias=False), ) def reshape_tensor(x, heads): bs, length, width = x.shape #(bs, length, width) --> (bs, length, n_heads, dim_per_head) x = x.view(bs, length, heads, -1) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) x = x.transpose(1, 2) # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) x = x.reshape(bs, heads, length, -1) return x class PerceiverAttention(nn.Module): def __init__(self, *, dim, dim_head=64, heads=8): super().__init__() self.scale = dim_head**-0.5 self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents, shift=None, scale=None): """ Args: x (torch.Tensor): image features shape (b, n1, D) latent (torch.Tensor): latent features shape (b, n2, D) """ x = self.norm1(x) latents = self.norm2(latents) if shift is not None and scale is not None: latents = latents * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) b, l, _ = latents.shape q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk(2, dim=-1) q = reshape_tensor(q, self.heads) k = reshape_tensor(k, self.heads) v = reshape_tensor(v, self.heads) # attention scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) out = weight @ v out = out.permute(0, 2, 1, 3).reshape(b, l, -1) return self.to_out(out) class ReshapeExpandToken(nn.Module): def __init__(self, expand_token, token_dim): super().__init__() self.expand_token = expand_token self.token_dim = token_dim def forward(self, x): x = x.reshape(-1, self.expand_token, self.token_dim) return x class TimeResampler(nn.Module): def __init__( self, dim=1024, depth=8, dim_head=64, heads=16, num_queries=8, embedding_dim=768, output_dim=1024, ff_mult=4, timestep_in_dim=320, timestep_flip_sin_to_cos=True, timestep_freq_shift=0, expand_token=None, extra_dim=None, ): super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) self.expand_token = expand_token is not None if expand_token: self.expand_proj = torch.nn.Sequential( torch.nn.Linear(embedding_dim, embedding_dim * 2), torch.nn.GELU(), torch.nn.Linear(embedding_dim * 2, embedding_dim * expand_token), ReshapeExpandToken(expand_token, embedding_dim), RMSNorm(embedding_dim, eps=1e-8), ) self.proj_in = nn.Linear(embedding_dim, dim) self.extra_feature = extra_dim is not None if self.extra_feature: self.proj_in_norm = RMSNorm(dim, eps=1e-8) self.extra_proj_in = torch.nn.Sequential( nn.Linear(extra_dim, dim), RMSNorm(dim, eps=1e-8), ) self.proj_out = nn.Linear(dim, output_dim) self.norm_out = nn.LayerNorm(output_dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ # msa PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # ff FeedForward(dim=dim, mult=ff_mult), # adaLN nn.Sequential(nn.SiLU(), nn.Linear(dim, 4 * dim, bias=True)) ] ) ) # time self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift) self.time_embedding = TimestepEmbedding(timestep_in_dim, dim, act_fn="silu") def forward(self, x, timestep, need_temb=False, extra_feature=None): timestep_emb = self.embedding_time(x, timestep) # bs, dim latents = self.latents.repeat(x.size(0), 1, 1) if self.expand_token: x = self.expand_proj(x) x = self.proj_in(x) if self.extra_feature: extra_feature = self.extra_proj_in(extra_feature) x = self.proj_in_norm(x) x = torch.cat([x, extra_feature], dim=1) x = x + timestep_emb[:, None] for attn, ff, adaLN_modulation in self.layers: shift_msa, scale_msa, shift_mlp, scale_mlp = adaLN_modulation(timestep_emb).chunk(4, dim=1) latents = attn(x, latents, shift_msa, scale_msa) + latents res = latents for idx_ff in range(len(ff)): layer_ff = ff[idx_ff] latents = layer_ff(latents) if idx_ff == 0 and isinstance(layer_ff, nn.LayerNorm): # adaLN latents = latents * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) latents = latents + res # latents = ff(latents) + latents latents = self.proj_out(latents) latents = self.norm_out(latents) if need_temb: return latents, timestep_emb else: return latents def embedding_time(self, sample, timestep): # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) emb = self.time_embedding(t_emb, None) return emb class CrossLayerCrossScaleProjector(nn.Module): def __init__( self, inner_dim=2688, num_attention_heads=42, attention_head_dim=64, cross_attention_dim=2688, num_layers=4, # resampler dim=1280, depth=4, dim_head=64, heads=20, num_queries=1024, embedding_dim=1152 + 1536, output_dim=4096, ff_mult=4, timestep_in_dim=320, timestep_flip_sin_to_cos=True, timestep_freq_shift=0, ): super().__init__() self.cross_layer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=0, cross_attention_dim=cross_attention_dim, activation_fn="geglu", num_embeds_ada_norm=None, attention_bias=False, only_cross_attention=False, double_self_attention=False, upcast_attention=False, norm_type='layer_norm', norm_elementwise_affine=True, norm_eps=1e-6, attention_type="default", ) for _ in range(num_layers) ] ) self.cross_scale_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=0, cross_attention_dim=cross_attention_dim, activation_fn="geglu", num_embeds_ada_norm=None, attention_bias=False, only_cross_attention=False, double_self_attention=False, upcast_attention=False, norm_type='layer_norm', norm_elementwise_affine=True, norm_eps=1e-6, attention_type="default", ) for _ in range(num_layers) ] ) self.proj = Mlp( in_features=inner_dim, hidden_features=int(inner_dim*2), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0 ) self.proj_cross_layer = Mlp( in_features=inner_dim, hidden_features=int(inner_dim*2), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0 ) self.proj_cross_scale = Mlp( in_features=inner_dim, hidden_features=int(inner_dim*2), act_layer=lambda: nn.GELU(approximate="tanh"), drop=0 ) self.resampler = TimeResampler( dim=dim, depth=depth, dim_head=dim_head, heads=heads, num_queries=num_queries, embedding_dim=embedding_dim, output_dim=output_dim, ff_mult=ff_mult, timestep_in_dim=timestep_in_dim, timestep_flip_sin_to_cos=timestep_flip_sin_to_cos, timestep_freq_shift=timestep_freq_shift, ) def forward(self, low_res_shallow, low_res_deep, high_res_deep, timesteps, cross_attention_kwargs=None, need_temb=True): ''' low_res_shallow [bs, 729*l, c] low_res_deep [bs, 729, c] high_res_deep [bs, 729*4, c] ''' cross_layer_hidden_states = low_res_deep for block in self.cross_layer_blocks: cross_layer_hidden_states = block( cross_layer_hidden_states, encoder_hidden_states=low_res_shallow, cross_attention_kwargs=cross_attention_kwargs, ) cross_layer_hidden_states = self.proj_cross_layer(cross_layer_hidden_states) cross_scale_hidden_states = low_res_deep for block in self.cross_scale_blocks: cross_scale_hidden_states = block( cross_scale_hidden_states, encoder_hidden_states=high_res_deep, cross_attention_kwargs=cross_attention_kwargs, ) cross_scale_hidden_states = self.proj_cross_scale(cross_scale_hidden_states) hidden_states = self.proj(low_res_deep) + cross_scale_hidden_states hidden_states = torch.cat([hidden_states, cross_layer_hidden_states], dim=1) hidden_states, timestep_emb = self.resampler(hidden_states, timesteps, need_temb=True) return hidden_states, timestep_emb