Spaces:
svjack
/
Runtime error

File size: 5,667 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import torch.nn.functional as F

from engine.BiRefNet.config import Config
from engine.BiRefNet.models.modules.deform_conv import DeformableConv2d

config = Config()


class _ASPPModule(nn.Module):
    def __init__(self, in_channels, planes, kernel_size, padding, dilation):
        super(_ASPPModule, self).__init__()
        self.atrous_conv = nn.Conv2d(
            in_channels,
            planes,
            kernel_size=kernel_size,
            stride=1,
            padding=padding,
            dilation=dilation,
            bias=False,
        )
        self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.atrous_conv(x)
        x = self.bn(x)

        return self.relu(x)


class ASPP(nn.Module):
    def __init__(self, in_channels=64, out_channels=None, output_stride=16):
        super(ASPP, self).__init__()
        self.down_scale = 1
        if out_channels is None:
            out_channels = in_channels
        self.in_channelster = 256 // self.down_scale
        if output_stride == 16:
            dilations = [1, 6, 12, 18]
        elif output_stride == 8:
            dilations = [1, 12, 24, 36]
        else:
            raise NotImplementedError

        self.aspp1 = _ASPPModule(
            in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0]
        )
        self.aspp2 = _ASPPModule(
            in_channels,
            self.in_channelster,
            3,
            padding=dilations[1],
            dilation=dilations[1],
        )
        self.aspp3 = _ASPPModule(
            in_channels,
            self.in_channelster,
            3,
            padding=dilations[2],
            dilation=dilations[2],
        )
        self.aspp4 = _ASPPModule(
            in_channels,
            self.in_channelster,
            3,
            padding=dilations[3],
            dilation=dilations[3],
        )

        self.global_avg_pool = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, 1)),
            nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
            (
                nn.BatchNorm2d(self.in_channelster)
                if config.batch_size > 1
                else nn.Identity()
            ),
            nn.ReLU(inplace=True),
        )
        self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
        self.bn1 = (
            nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
        )
        self.relu = nn.ReLU(inplace=True)
        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x1 = self.aspp1(x)
        x2 = self.aspp2(x)
        x3 = self.aspp3(x)
        x4 = self.aspp4(x)
        x5 = self.global_avg_pool(x)
        x5 = F.interpolate(x5, size=x1.size()[2:], mode="bilinear", align_corners=True)
        x = torch.cat((x1, x2, x3, x4, x5), dim=1)

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        return self.dropout(x)


##################### Deformable
class _ASPPModuleDeformable(nn.Module):
    def __init__(self, in_channels, planes, kernel_size, padding):
        super(_ASPPModuleDeformable, self).__init__()
        self.atrous_conv = DeformableConv2d(
            in_channels,
            planes,
            kernel_size=kernel_size,
            stride=1,
            padding=padding,
            bias=False,
        )
        self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.atrous_conv(x)
        x = self.bn(x)

        return self.relu(x)


class ASPPDeformable(nn.Module):
    def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
        super(ASPPDeformable, self).__init__()
        self.down_scale = 1
        if out_channels is None:
            out_channels = in_channels
        self.in_channelster = 256 // self.down_scale

        self.aspp1 = _ASPPModuleDeformable(
            in_channels, self.in_channelster, 1, padding=0
        )
        self.aspp_deforms = nn.ModuleList(
            [
                _ASPPModuleDeformable(
                    in_channels,
                    self.in_channelster,
                    conv_size,
                    padding=int(conv_size // 2),
                )
                for conv_size in parallel_block_sizes
            ]
        )

        self.global_avg_pool = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, 1)),
            nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
            (
                nn.BatchNorm2d(self.in_channelster)
                if config.batch_size > 1
                else nn.Identity()
            ),
            nn.ReLU(inplace=True),
        )
        self.conv1 = nn.Conv2d(
            self.in_channelster * (2 + len(self.aspp_deforms)),
            out_channels,
            1,
            bias=False,
        )
        self.bn1 = (
            nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
        )
        self.relu = nn.ReLU(inplace=True)
        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x1 = self.aspp1(x)
        x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
        x5 = self.global_avg_pool(x)
        x5 = F.interpolate(x5, size=x1.size()[2:], mode="bilinear", align_corners=True)
        x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        return self.dropout(x)