File size: 15,072 Bytes
c614b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
# -*- coding: utf-8 -*-
# @Organization : Alibaba XR-Lab
# @Author : Lingteng Qiu
# @Email : [email protected]
# @Time : 2024-08-30 16:26:10
# @Function : SAM2 Segment class
import sys
sys.path.append("./")
import copy
import os
import pdb
import tempfile
import time
from bisect import bisect_left
from dataclasses import dataclass
import cv2
import numpy as np
import PIL
import torch
from pytorch3d.ops import sample_farthest_points
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from torchvision import transforms
from engine.BiRefNet.models.birefnet import BiRefNet
from engine.ouputs import BaseOutput
from engine.SegmentAPI.base import BaseSeg, Bbox
from engine.SegmentAPI.img_utils import load_image_file
SAM2_WEIGHT = "pretrained_models/sam2/sam2.1_hiera_large.pt"
BIREFNET_WEIGHT = "pretrained_models/BiRefNet-general-epoch_244.pth"
def avaliable_device():
if torch.cuda.is_available():
current_device_id = torch.cuda.current_device()
device = f"cuda:{current_device_id}"
else:
device = "cpu"
return device
@dataclass
class SegmentOut(BaseOutput):
masks: np.ndarray
processed_img: np.ndarray
alpha_img: np.ndarray
def distance(p1, p2):
return np.sqrt(np.sum((p1 - p2) ** 2))
def FPS(sample, num):
n = sample.shape[0]
center = np.mean(sample, axis=0)
select_p = []
L = []
for i in range(n):
L.append(distance(sample[i], center))
p0 = np.argmax(L)
select_p.append(p0)
L = []
for i in range(n):
L.append(distance(p0, sample[i]))
select_p.append(np.argmax(L))
for i in range(num - 2):
for p in range(n):
d = distance(sample[select_p[-1]], sample[p])
if d <= L[p]:
L[p] = d
select_p.append(np.argmax(L))
return select_p, sample[select_p]
def fill_mask(alpha):
# alpha = np.pad(alpha, ((1, 1), (1, 1)), mode="constant", constant_values=0)
h, w = alpha.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
alpha = (alpha * 255).astype(np.uint8)
im_floodfill = alpha.copy()
retval, image, mask, rect = cv2.floodFill(im_floodfill, mask, (0, 0), 255)
im_floodfill_inv = cv2.bitwise_not(im_floodfill)
alpha = alpha | im_floodfill_inv
alpha = alpha.astype(np.float32) / 255.0
# return alpha[1 : h - 1, 1 : w - 1, ...]
return alpha
def erode_and_dialted(mask, kernel_size=3, iterations=1):
kernel = np.ones((kernel_size, kernel_size), np.uint8)
eroded_mask = cv2.erode(mask, kernel, iterations=iterations)
dilated_mask = cv2.dilate(eroded_mask, kernel, iterations=iterations)
return dilated_mask
def eroded(mask, kernel_size=3, iterations=1):
kernel = np.ones((kernel_size, kernel_size), np.uint8)
eroded_mask = cv2.erode(mask, kernel, iterations=iterations)
return eroded_mask
def model_type(model):
print(next(model.parameters()).device)
class SAM2Seg(BaseSeg):
RATIO_MAP = [[512, 1], [1280, 0.6], [1920, 0.4], [3840, 0.2]]
def tocpu(self):
self.box_prior.cpu()
self.image_predictor.model.cpu()
torch.cuda.empty_cache()
def tocuda(self):
self.box_prior.cuda()
self.image_predictor.model.cuda()
def __init__(
self,
config="sam2.1_hiera_l.yaml",
matting_config="resnet50",
background=(1.0, 1.0, 1.0),
wo_supres=False,
):
super().__init__()
self.device = avaliable_device()
try:
sam2_image_model = build_sam2(config, SAM2_WEIGHT)
except:
config = os.path.join("./configs/sam2.1/", config) # sam2.1 case
sam2_image_model = build_sam2(config, SAM2_WEIGHT)
self.image_predictor = SAM2ImagePredictor(sam2_image_model)
self.box_prior = None
# Robust-Human-Matting
# self.matting_predictor = MattingNetwork(matting_config).eval().cuda()
# self.matting_predictor.load_state_dict(torch.load(MATTING_WEIGHT))
self.background = background
self.wo_supers = wo_supres
def clean_up(self):
self.tmp.cleanup()
def collect_inputs(self, inputs):
return dict(
img_path=inputs["img_path"],
bbox=inputs["bbox"],
)
def _super_resolution(self, input_path):
low = os.path.abspath(input_path)
high = self.tmp.name
super_weights = os.path.abspath("./pretrained_models/RealESRGAN_x4plus.pth")
hander = os.path.join(SUPRES_PATH, "inference_realesrgan.py")
cmd = f"python {hander} -n RealESRGAN_x4plus -i {low} -o {high} --model_path {super_weights} -s 2"
os.system(cmd)
return os.path.join(high, os.path.basename(input_path))
def predict_bbox(self, img, scale=1.0):
ratio = self.ratio_mapping(img)
# uint8
# [0 1]
img = np.asarray(img).astype(np.float32) / 255.0
height, width, _ = img.shape
# [C H W]
img_tensor = torch.from_numpy(img).permute(2, 0, 1)
bgr = torch.tensor([1.0, 1.0, 1.0]).view(3, 1, 1).cuda() # Green background.
rec = [None] * 4 # Initial recurrent states.
# predict matting
with torch.no_grad():
img_tensor = img_tensor.unsqueeze(0).to(self.device)
fgr, pha, *rec = self.matting_predictor(
img_tensor.to(self.device),
*rec,
downsample_ratio=ratio,
) # Cycle the recurrent states.
pha[pha < 0.5] = 0.0
pha[pha >= 0.5] = 1.0
pha = pha[0].permute(1, 2, 0).detach().cpu().numpy()
# obtain bbox
_h, _w, _ = np.where(pha == 1)
whwh = [
_w.min().item(),
_h.min().item(),
_w.max().item(),
_h.max().item(),
]
box = Bbox(whwh)
# scale box to 1.05
scale_box = box.scale(1.00, width=width, height=height)
return scale_box, pha[..., 0]
def birefnet_predict_bbox(self, img, scale=1.0):
# img: RGB-order
if self.box_prior == None:
from engine.BiRefNet.utils import check_state_dict
birefnet = BiRefNet(bb_pretrained=False)
state_dict = torch.load(BIREFNET_WEIGHT, map_location="cpu")
state_dict = check_state_dict(state_dict)
birefnet.load_state_dict(state_dict)
device = avaliable_device()
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet.to(device)
self.box_prior = birefnet
self.box_prior.eval()
self.box_transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
print("BiRefNet is ready to use.")
else:
device = avaliable_device()
self.box_prior.to(device)
height, width, _ = img.shape
image = PIL.Image.fromarray(img)
input_images = self.box_transform(image).unsqueeze(0).to("cuda")
with torch.no_grad():
preds = self.box_prior(input_images)[-1].sigmoid().cpu()
pha = (preds[0]).squeeze(0).detach().numpy()
pha = cv2.resize(pha, (width, height))
masks = copy.deepcopy(pha[..., None])
masks[masks < 0.3] = 0.0
masks[masks >= 0.3] = 1.0
# obtain bbox
_h, _w, _ = np.where(masks == 1)
whwh = [
_w.min().item(),
_h.min().item(),
_w.max().item(),
_h.max().item(),
]
box = Bbox(whwh)
# scale box to 1.05
scale_box = box.scale(scale=scale, width=width, height=height)
return scale_box, pha
def rembg_predict_bbox(self, img, scale=1.0):
height, width, _ = img.shape
with torch.no_grad():
img_rmbg = img[..., ::-1] # rgb2bgr
img_rmbg = remove(img_rmbg)
img_rmbg = img_rmbg[..., :3]
pha = copy.deepcopy(img_rmbg[..., -1:])
masks = copy.deepcopy(pha)
masks[masks < 1.0] = 0.0
masks[masks >= 1.0] = 1.0
# obtain bbox
_h, _w, _ = np.where(masks == 1)
whwh = [
_w.min().item(),
_h.min().item(),
_w.max().item(),
_h.max().item(),
]
box = Bbox(whwh)
# scale box to 1.05
scale_box = box.scale(scale=scale, width=width, height=height)
return scale_box, pha[..., 0].astype(np.float32) / 255.0
def yolo_predict_bbox(self, img, scale=1.0, threshold=0.2):
if self.prior == None:
from ultralytics import YOLO
pdb.set_trace()
height, width, _ = img.shape
with torch.no_grad():
results = yolo_seg(img[..., ::-1])
for result in results:
masks = result.masks.data[result.boxes.cls == 0]
if masks.shape[0] >= 1:
masks[masks >= threshold] = 1
masks[masks < threshold] = 0
masks = masks.sum(dim=0)
pha = masks.detach().cpu().numpy()
pha = cv2.resize(pha, (width, height), interpolation=cv2.INTER_AREA)[..., None]
pha[pha >= 0.5] = 1
pha[pha < 0.5] = 0
masks = copy.deepcopy(pha)
pha = pha * 255.0
# obtain bbox
_h, _w, _ = np.where(masks == 1)
whwh = [
_w.min().item(),
_h.min().item(),
_w.max().item(),
_h.max().item(),
]
box = Bbox(whwh)
# scale box to 1.05
scale_box = box.scale(scale=scale, width=width, height=height)
return scale_box, pha[..., 0].astype(np.float32) / 255.0
def ratio_mapping(self, img):
my_ratio_map = self.RATIO_MAP
ratio_landmarks = [v[0] for v in my_ratio_map]
ratio_v = [v[1] for v in my_ratio_map]
h, w, _ = img.shape
max_length = min(h, w)
low_bound = bisect_left(
ratio_landmarks, max_length, lo=0, hi=len(ratio_landmarks)
)
if 0 == low_bound:
return 1.0
elif low_bound == len(ratio_landmarks):
return ratio_v[-1]
else:
_l = ratio_v[low_bound - 1]
_r = ratio_v[low_bound]
_l_land = ratio_landmarks[low_bound - 1]
_r_land = ratio_landmarks[low_bound]
cur_ratio = _l + (_r - _l) * (max_length - _l_land) / (_r_land - _l_land)
return cur_ratio
def get_img(self, img_path, sup_res=True):
img = cv2.imread(img_path)
img = img[..., ::-1].copy() # bgr2rgb
if self.wo_supers:
return img
return img
def compute_coords(self, pha, bbox):
node_prompts = []
H, W = pha.shape
y_indices, x_indices = np.indices((H, W))
coors = np.stack((x_indices, y_indices), axis=-1)
# reduce the effect from pha
# pha = eroded((pha * 255).astype(np.uint8), 3, 3) / 255.0
pha_coors = np.repeat(pha[..., None], 2, axis=2)
coors_points = (coors * pha_coors).sum(axis=0).sum(axis=0) / (pha.sum() + 1e-6)
node_prompts.append(coors_points.tolist())
_h, _w = np.where(pha > 0.5)
sample_ps = torch.from_numpy(np.stack((_w, _h), axis=-1).astype(np.float32)).to(
avaliable_device()
)
# positive prompts
node_prompts_fps, _ = sample_farthest_points(sample_ps[None], K=5)
node_prompts_fps = (
node_prompts_fps[0].detach().cpu().numpy().astype(np.int32).tolist()
)
node_prompts.extend(node_prompts_fps)
node_prompts_label = [1 for _ in range(len(node_prompts))]
return node_prompts, node_prompts_label
def _forward(self, img_path, bbox, sup_res=True):
img = self.get_img(img_path, sup_res)
if bbox is None:
# bbox, pha = self.predict_bbox(img)
# bbox, pha = self.rembg_predict_bbox(img, 1.01)
# bbox, pha = self.yolo_predict_bbox(img)
bbox, pha = self.birefnet_predict_bbox(img, 1.01)
box = bbox.to_whwh()
bbox = box.get_box()
point_coords, point_coords_label = self.compute_coords(pha, bbox)
self.image_predictor.set_image(img)
masks, scores, logits = self.image_predictor.predict(
point_coords=point_coords,
point_labels=point_coords_label,
box=bbox,
multimask_output=False,
)
alpha = masks[0]
# fill-mask NO USE
# alpha = fill_mask(alpha)
# alpha = erode_and_dialted(
# (alpha * 255).astype(np.uint8), kernel_size=3, iterations=3
# )
# alpha = alpha.astype(np.float32) / 255.0
img_float = img.astype(np.float32) / 255.0
process_img = (
img_float * alpha[..., None] + (1 - alpha[..., None]) * self.background
)
process_img = (process_img * 255).astype(np.uint8)
# using for draw box
# process_img = cv2.rectangle(process_img, bbox[:2], bbox[2:], (0, 0, 255), 2)
process_img = process_img.astype(np.float) / 255.0
process_pha_img = (
img_float * pha[..., None] + (1 - pha[..., None]) * self.background
)
return SegmentOut(
masks=alpha, processed_img=process_img, alpha_img=process_pha_img[...]
)
@torch.no_grad()
def __call__(self, **inputs):
self.tmp = tempfile.TemporaryDirectory()
self.collect_inputs(inputs)
out = self._forward(**inputs)
self.clean_up()
return out
def get_parse():
import argparse
parser = argparse.ArgumentParser(description="")
parser.add_argument("-i", "--input", required=True, help="input path")
parser.add_argument("-o", "--output", required=True, help="output path")
parser.add_argument("--mask", action="store_true", help="mask bool")
parser.add_argument(
"--wo_super_reso", action="store_true", help="whether using super_resolution"
)
args = parser.parse_args()
return args
def main():
opt = get_parse()
img_list = os.listdir(opt.input)
img_names = [os.path.join(opt.input, img_name) for img_name in img_list]
os.makedirs(opt.output, exist_ok=True)
model = SAM2Seg(wo_supres=opt.wo_super_reso)
for img in img_names:
print(f"processing {img}")
out = model(img_path=img, bbox=None)
save_path = os.path.join(opt.output, os.path.basename(img))
alpha = fill_mask(out.masks)
alpha = erode_and_dialted(
(alpha * 255).astype(np.uint8), kernel_size=3, iterations=3
)
save_img = alpha
cv2.imwrite(save_path, save_img)
if __name__ == "__main__":
main()
|