Spaces:
svjack
/
Runtime error

File size: 5,908 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# -*- coding: utf-8 -*-
# @Organization  : Alibaba XR-Lab
# @Author        : Lingteng Qiu
# @Email         : [email protected]
# @Time          : 2025-03-03 10:28:35
# @Function      : Easy to use PSNR metric
import os
import sys

sys.path.append("./")

import math
import pdb

import cv2
import numpy as np
import skimage
import torch
from PIL import Image
from tqdm import tqdm


def write_json(path, x):
    """write a json file.

    Args:
        path (str): path to write json file.
        x (dict): dict to write.
    """
    import json

    with open(path, "w") as f:
        json.dump(x, f, indent=2)


def img_center_padding(img_np, pad_ratio=0.2, background=1):

    ori_w, ori_h = img_np.shape[:2]

    w = round((1 + pad_ratio) * ori_w)
    h = round((1 + pad_ratio) * ori_h)

    if background == 1:
        img_pad_np = np.ones((w, h, 3), dtype=img_np.dtype)
    else:
        img_pad_np = np.zeros((w, h, 3), dtype=img_np.dtype)
    offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2
    img_pad_np[
        offset_h : offset_h + img_np.shape[0] :, offset_w : offset_w + img_np.shape[1]
    ] = img_np

    return img_pad_np, offset_w, offset_h


def compute_psnr(src, tar):
    psnr = skimage.metrics.peak_signal_noise_ratio(tar, src, data_range=1)
    return psnr


def get_parse():
    import argparse

    parser = argparse.ArgumentParser(description="")
    parser.add_argument("-f1", "--folder1", required=True, help="input path")
    parser.add_argument("-f2", "--folder2", required=True, help="output path")
    parser.add_argument("-m", "--mask", default=None, help="output path")
    parser.add_argument("--pre", default="")
    parser.add_argument("--debug", action="store_true")
    parser.add_argument("--pad", action="store_true", help="if the gt pad?")
    args = parser.parse_args()
    return args


def get_image_paths_current_dir(folder_path):
    image_extensions = {
        ".jpg",
        ".jpeg",
        ".png",
        ".gif",
        ".bmp",
        ".tiff",
        ".webp",
        ".jfif",
    }

    return sorted(
        [
            os.path.join(folder_path, f)
            for f in os.listdir(folder_path)
            if os.path.splitext(f)[1].lower() in image_extensions
        ]
    )


def psnr_compute(
    input_data,
    results_data,
    mask_data=None,
    pad=False,
):

    gt_imgs = get_image_paths_current_dir(input_data)
    result_imgs = get_image_paths_current_dir(os.path.join(results_data))

    if mask_data is not None:
        mask_imgs = get_image_paths_current_dir(mask_data)
    else:
        mask_imgs = None

    if "visualization" in result_imgs[-1]:
        result_imgs = result_imgs[:-1]

    if len(gt_imgs) != len(result_imgs):
        return -1

    psnr_mean = []

    for mask_i, (gt, result) in tqdm(enumerate(zip(gt_imgs, result_imgs))):
        result_img = (cv2.imread(result, cv2.IMREAD_UNCHANGED) / 255.0).astype(
            np.float32
        )
        gt_img = (cv2.imread(gt, cv2.IMREAD_UNCHANGED) / 255.0).astype(np.float32)

        if mask_imgs is not None:
            mask_img = (
                cv2.imread(mask_imgs[mask_i], cv2.IMREAD_UNCHANGED) / 255.0
            ).astype(np.float32)
            mask_img = mask_img[..., -1]
            mask_img = np.stack([mask_img] * 3, axis=-1)
            mask_img, _, _ = img_center_padding(mask_img, background=0)

        if pad:
            gt_img, _, _ = img_center_padding(gt_img)

        h, w, c = result_img.shape

        scale_h = int(h * 512 / w)

        gt_img = cv2.resize(gt_img, (512, scale_h), interpolation=cv2.INTER_AREA)
        result_img = cv2.resize(
            result_img, (512, scale_h), interpolation=cv2.INTER_AREA
        )

        if mask_imgs is not None:
            mask_img = cv2.resize(mask_img, (w, h), interpolation=cv2.INTER_AREA)
            gt_img = gt_img * mask_img + 1 - mask_img
            result_img = result_img * mask_img + 1 - mask_img
            mask_label = mask_img[..., 0]
            psnr_mean += [
                compute_psnr(result_img[mask_label > 0.5], gt_img[mask_label > 0.5])
            ]
        else:
            psnr_mean += [compute_psnr(result_img, gt_img)]

    psnr = np.mean(psnr_mean)

    return psnr


if __name__ == "__main__":

    opt = get_parse()

    input_folder = opt.folder1
    target_folder = opt.folder2
    mask_folder = opt.mask

    valid_txt = os.path.join(input_folder, "front_view.txt")

    target_folder = target_folder[:-1] if target_folder[-1] == "/" else target_folder

    if mask_folder is not None:
        mask_folder = mask_folder[:-1] if mask_folder[-1] == "/" else mask_folder

    target_key = target_folder.split("/")[-2:]

    save_folder = os.path.join(f"./exps/metrics{opt.pre}", "psnr_results", *target_key)
    os.makedirs(save_folder, exist_ok=True)

    with open(valid_txt) as f:
        items = f.read().splitlines()
        items = [x.split(" ")[0] for x in items]

    results_dict = dict()
    psnr_list = []

    for item in items:

        input_item_folder = os.path.join(input_folder, item)
        if mask_folder is not None:
            mask_item_folder = os.path.join(mask_folder, item)
        else:
            mask_item_folder = None
        target_item_folder = os.path.join(target_folder, item, "rgb")

        if os.path.exists(input_item_folder) and os.path.exists(target_item_folder):

            psnr = psnr_compute(
                input_item_folder, target_item_folder, mask_item_folder, opt.pad
            )

            if psnr == -1:
                continue

            psnr_list.append(psnr)

            results_dict[item] = psnr
            if opt.debug:
                break
            print(results_dict)

    results_dict["all_mean"] = np.mean(psnr_list)

    print(save_folder)

    print(results_dict)
    write_json(os.path.join(save_folder, "PSNR.json"), results_dict)