Spaces:
svjack
/
Runtime error

QZFantasies's picture
add wheels
c614b0f
import os
from tqdm import tqdm
import cv2
from PIL import Image
import numpy as np
from scipy.ndimage import convolve, distance_transform_edt as bwdist
from skimage.morphology import skeletonize
from skimage.morphology import disk
from skimage.measure import label
_EPS = np.spacing(1)
_TYPE = np.float64
def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'MBA', 'BIoU', 'MSE', 'HCE'], verbose=False):
# define measures
if 'E' in metrics:
EM = EMeasure()
if 'S' in metrics:
SM = SMeasure()
if 'F' in metrics:
FM = FMeasure()
if 'MAE' in metrics:
MAE = MAEMeasure()
if 'MSE' in metrics:
MSE = MSEMeasure()
if 'WF' in metrics:
WFM = WeightedFMeasure()
if 'HCE' in metrics:
HCE = HCEMeasure()
if 'MBA' in metrics:
MBA = MBAMeasure()
if 'BIoU' in metrics:
BIoU = BIoUMeasure()
if isinstance(gt_paths, list) and isinstance(pred_paths, list):
# print(len(gt_paths), len(pred_paths))
assert len(gt_paths) == len(pred_paths)
for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)):
gt = gt_paths[idx_sample]
pred = pred_paths[idx_sample]
pred = pred[:-4] + '.png'
valid_extensions = ['.png', '.jpg', '.PNG', '.JPG', '.JPEG']
file_exists = False
for ext in valid_extensions:
if os.path.exists(pred[:-4] + ext):
pred = pred[:-4] + ext
file_exists = True
break
if file_exists:
pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE)
else:
print('Not exists:', pred)
gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE)
pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0]))
if 'E' in metrics:
EM.step(pred=pred_ary, gt=gt_ary)
if 'S' in metrics:
SM.step(pred=pred_ary, gt=gt_ary)
if 'F' in metrics:
FM.step(pred=pred_ary, gt=gt_ary)
if 'MAE' in metrics:
MAE.step(pred=pred_ary, gt=gt_ary)
if 'MSE' in metrics:
MSE.step(pred=pred_ary, gt=gt_ary)
if 'WF' in metrics:
WFM.step(pred=pred_ary, gt=gt_ary)
if 'HCE' in metrics:
ske_path = gt.replace('/gt/', '/ske/')
if os.path.exists(ske_path):
ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE)
ske_ary = ske_ary > 128
else:
ske_ary = skeletonize(gt_ary > 128)
ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1])
if ske_path[0] == os.sep:
ske_save_dir = os.sep + ske_save_dir
os.makedirs(ske_save_dir, exist_ok=True)
cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255)
HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary)
if 'MBA' in metrics:
MBA.step(pred=pred_ary, gt=gt_ary)
if 'BIoU' in metrics:
BIoU.step(pred=pred_ary, gt=gt_ary)
if 'E' in metrics:
em = EM.get_results()['em']
else:
em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
if 'S' in metrics:
sm = SM.get_results()['sm']
else:
sm = np.float64(-1)
if 'F' in metrics:
fm = FM.get_results()['fm']
else:
fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
if 'MAE' in metrics:
mae = MAE.get_results()['mae']
else:
mae = np.float64(-1)
if 'MSE' in metrics:
mse = MSE.get_results()['mse']
else:
mse = np.float64(-1)
if 'WF' in metrics:
wfm = WFM.get_results()['wfm']
else:
wfm = np.float64(-1)
if 'HCE' in metrics:
hce = HCE.get_results()['hce']
else:
hce = np.float64(-1)
if 'MBA' in metrics:
mba = MBA.get_results()['mba']
else:
mba = np.float64(-1)
if 'BIoU' in metrics:
biou = BIoU.get_results()['biou']
else:
biou = {'curve': np.array([np.float64(-1)])}
return em, sm, fm, mae, mse, wfm, hce, mba, biou
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
gt = gt > 128
pred = pred / 255
if pred.max() != pred.min():
pred = (pred - pred.min()) / (pred.max() - pred.min())
return pred, gt
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
return min(2 * matrix.mean(), max_value)
class FMeasure(object):
def __init__(self, beta: float = 0.3):
self.beta = beta
self.precisions = []
self.recalls = []
self.adaptive_fms = []
self.changeable_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
self.adaptive_fms.append(adaptive_fm)
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
self.precisions.append(precisions)
self.recalls.append(recalls)
self.changeable_fms.append(changeable_fms)
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
binary_predcition = pred >= adaptive_threshold
area_intersection = binary_predcition[gt].sum()
if area_intersection == 0:
adaptive_fm = 0
else:
pre = area_intersection / np.count_nonzero(binary_predcition)
rec = area_intersection / np.count_nonzero(gt)
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
return adaptive_fm
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins)
bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
precisions = TPs / Ps
recalls = TPs / T
numerator = (1 + self.beta) * precisions * recalls
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
changeable_fms = numerator / denominator
return precisions, recalls, changeable_fms
def get_results(self) -> dict:
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm),
pr=dict(p=precision, r=recall))
class MAEMeasure(object):
def __init__(self):
self.maes = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
mae = self.cal_mae(pred, gt)
self.maes.append(mae)
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float:
mae = np.mean(np.abs(pred - gt))
return mae
def get_results(self) -> dict:
mae = np.mean(np.array(self.maes, _TYPE))
return dict(mae=mae)
class MSEMeasure(object):
def __init__(self):
self.mses = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
mse = self.cal_mse(pred, gt)
self.mses.append(mse)
def cal_mse(self, pred: np.ndarray, gt: np.ndarray) -> float:
mse = np.mean((pred - gt) ** 2)
return mse
def get_results(self) -> dict:
mse = np.mean(np.array(self.mses, _TYPE))
return dict(mse=mse)
class SMeasure(object):
def __init__(self, alpha: float = 0.5):
self.sms = []
self.alpha = alpha
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
sm = self.cal_sm(pred, gt)
self.sms.append(sm)
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
y = np.mean(gt)
if y == 0:
sm = 1 - np.mean(pred)
elif y == 1:
sm = np.mean(pred)
else:
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
sm = max(0, sm)
return sm
def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
fg = pred * gt
bg = (1 - pred) * (1 - gt)
u = np.mean(gt)
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
return object_score
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
x = np.mean(pred[gt == 1])
sigma_x = np.std(pred[gt == 1], ddof=1)
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
return score
def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
x, y = self.centroid(gt)
part_info = self.divide_with_xy(pred, gt, x, y)
w1, w2, w3, w4 = part_info['weight']
pred1, pred2, pred3, pred4 = part_info['pred']
gt1, gt2, gt3, gt4 = part_info['gt']
score1 = self.ssim(pred1, gt1)
score2 = self.ssim(pred2, gt2)
score3 = self.ssim(pred3, gt3)
score4 = self.ssim(pred4, gt4)
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
def centroid(self, matrix: np.ndarray) -> tuple:
h, w = matrix.shape
area_object = np.count_nonzero(matrix)
if area_object == 0:
x = np.round(w / 2)
y = np.round(h / 2)
else:
# More details can be found at: https://www.yuque.com/lart/blog/gpbigm
y, x = np.argwhere(matrix).mean(axis=0).round()
return int(x) + 1, int(y) + 1
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict:
h, w = gt.shape
area = h * w
gt_LT = gt[0:y, 0:x]
gt_RT = gt[0:y, x:w]
gt_LB = gt[y:h, 0:x]
gt_RB = gt[y:h, x:w]
pred_LT = pred[0:y, 0:x]
pred_RT = pred[0:y, x:w]
pred_LB = pred[y:h, 0:x]
pred_RB = pred[y:h, x:w]
w1 = x * y / area
w2 = y * (w - x) / area
w3 = (h - y) * x / area
w4 = 1 - w1 - w2 - w3
return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB),
pred=(pred_LT, pred_RT, pred_LB, pred_RB),
weight=(w1, w2, w3, w4))
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
h, w = pred.shape
N = h * w
x = np.mean(pred)
y = np.mean(gt)
sigma_x = np.sum((pred - x) ** 2) / (N - 1)
sigma_y = np.sum((gt - y) ** 2) / (N - 1)
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
alpha = 4 * x * y * sigma_xy
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
if alpha != 0:
score = alpha / (beta + _EPS)
elif alpha == 0 and beta == 0:
score = 1
else:
score = 0
return score
def get_results(self) -> dict:
sm = np.mean(np.array(self.sms, dtype=_TYPE))
return dict(sm=sm)
class EMeasure(object):
def __init__(self):
self.adaptive_ems = []
self.changeable_ems = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
self.gt_fg_numel = np.count_nonzero(gt)
self.gt_size = gt.shape[0] * gt.shape[1]
changeable_ems = self.cal_changeable_em(pred, gt)
self.changeable_ems.append(changeable_ems)
adaptive_em = self.cal_adaptive_em(pred, gt)
self.adaptive_ems.append(adaptive_em)
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
return adaptive_em
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
return changeable_ems
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
binarized_pred = pred >= threshold
fg_fg_numel = np.count_nonzero(binarized_pred & gt)
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
fg___numel = fg_fg_numel + fg_bg_numel
bg___numel = self.gt_size - fg___numel
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel
else:
parts_numel, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel,
pred_fg_numel=fg___numel, pred_bg_numel=bg___numel,
)
results_parts = []
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
align_matrix_value = 2 * (combination[0] * combination[1]) / \
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts.append(enhanced_matrix_value * part_numel)
enhanced_matrix_sum = sum(results_parts)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel_w_thrs
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel_w_thrs
else:
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs,
pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs,
)
results_parts = np.empty(shape=(4, 256), dtype=np.float64)
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
align_matrix_value = 2 * (combination[0] * combination[1]) / \
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts[i] = enhanced_matrix_value * part_numel
enhanced_matrix_sum = results_parts.sum(axis=0)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel):
bg_fg_numel = self.gt_fg_numel - fg_fg_numel
bg_bg_numel = pred_bg_numel - bg_fg_numel
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
mean_pred_value = pred_fg_numel / self.gt_size
mean_gt_value = self.gt_fg_numel / self.gt_size
demeaned_pred_fg_value = 1 - mean_pred_value
demeaned_pred_bg_value = 0 - mean_pred_value
demeaned_gt_fg_value = 1 - mean_gt_value
demeaned_gt_bg_value = 0 - mean_gt_value
combinations = [
(demeaned_pred_fg_value, demeaned_gt_fg_value),
(demeaned_pred_fg_value, demeaned_gt_bg_value),
(demeaned_pred_bg_value, demeaned_gt_fg_value),
(demeaned_pred_bg_value, demeaned_gt_bg_value)
]
return parts_numel, combinations
def get_results(self) -> dict:
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
return dict(em=dict(adp=adaptive_em, curve=changeable_em))
class WeightedFMeasure(object):
def __init__(self, beta: float = 1):
self.beta = beta
self.weighted_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
if np.all(~gt):
wfm = 0
else:
wfm = self.cal_wfm(pred, gt)
self.weighted_fms.append(wfm)
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
# [Dst,IDXT] = bwdist(dGT);
Dst, Idxt = bwdist(gt == 0, return_indices=True)
# %Pixel dependency
# E = abs(FG-dGT);
E = np.abs(pred - gt)
Et = np.copy(E)
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
# K = fspecial('gaussian',7,5);
# EA = imfilter(Et,K);
K = self.matlab_style_gauss2D((7, 7), sigma=5)
EA = convolve(Et, weights=K, mode="constant", cval=0)
# MIN_E_EA = E;
# MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
MIN_E_EA = np.where(gt & (EA < E), EA, E)
# %Pixel importance
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
Ew = MIN_E_EA * B
TPw = np.sum(gt) - np.sum(Ew[gt == 1])
FPw = np.sum(Ew[gt == 0])
R = 1 - np.mean(Ew[gt == 1])
P = TPw / (TPw + FPw + _EPS)
# % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
return Q
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
"""
m, n = [(ss - 1) / 2 for ss in shape]
y, x = np.ogrid[-m: m + 1, -n: n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def get_results(self) -> dict:
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
return dict(wfm=weighted_fm)
class HCEMeasure(object):
def __init__(self):
self.hces = []
def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske):
# pred, gt = _prepare_data(pred, gt)
hce = self.cal_hce(pred, gt, gt_ske)
self.hces.append(hce)
def get_results(self) -> dict:
hce = np.mean(np.array(self.hces, _TYPE))
return dict(hce=hce)
def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float:
# Binarize gt
if(len(gt.shape)>2):
gt = gt[:, :, 0]
epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0
gt = (gt>epsilon_gt).astype(np.uint8)
# Binarize pred
if(len(pred.shape)>2):
pred = pred[:, :, 0]
epsilon_pred = 128#(np.amin(pred)+np.amax(pred))/2.0
pred = (pred>epsilon_pred).astype(np.uint8)
Union = np.logical_or(gt, pred)
TP = np.logical_and(gt, pred)
FP = pred - TP
FN = gt - TP
# relax the Union of gt and pred
Union_erode = Union.copy()
Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax)
# --- get the relaxed False Positive regions for computing the human efforts in correcting them ---
FP_ = np.logical_and(FP, Union_erode) # get the relaxed FP
for i in range(0, relax):
FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1))
FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN))
FP_ = np.logical_and(FP, FP_)
# --- get the relaxed False Negative regions for computing the human efforts in correcting them ---
FN_ = np.logical_and(FN, Union_erode) # preserve the structural components of FN
## recover the FN, where pixels are not close to the TP borders
for i in range(0, relax):
FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1))
FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP))
FN_ = np.logical_and(FN, FN_)
FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) # preserve the structural components of FN
## 2. =============Find exact polygon control points and independent regions==============
## find contours from FP_
ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
## find control points and independent regions for human correction
bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_))
## find contours from FN_
ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
## find control points and independent regions for human correction
bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_))
poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon)
poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon)
# FP_points+FP_indep+FN_points+FN_indep
return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN
def filter_bdy_cond(self, bdy_, mask, cond):
cond = cv2.dilate(cond.astype(np.uint8), disk(1))
labels = label(mask) # find the connected regions
lbls = np.unique(labels) # the indices of the connected regions
indep = np.ones(lbls.shape[0]) # the label of each connected regions
indep[0] = 0 # 0 indicate the background region
boundaries = []
h,w = cond.shape[0:2]
ind_map = np.zeros((h, w))
indep_cnt = 0
for i in range(0, len(bdy_)):
tmp_bdies = []
tmp_bdy = []
for j in range(0, bdy_[i].shape[0]):
r, c = bdy_[i][j,0,1],bdy_[i][j,0,0]
if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0):
if(len(tmp_bdy)>0):
tmp_bdies.append(tmp_bdy)
tmp_bdy = []
continue
tmp_bdy.append([c, r])
ind_map[r, c] = ind_map[r, c] + 1
indep[labels[r, c]] = 0 # indicates part of the boundary of this region needs human correction
if(len(tmp_bdy)>0):
tmp_bdies.append(tmp_bdy)
# check if the first and the last boundaries are connected
# if yes, invert the first boundary and attach it after the last boundary
if(len(tmp_bdies)>1):
first_x, first_y = tmp_bdies[0][0]
last_x, last_y = tmp_bdies[-1][-1]
if((abs(first_x-last_x)==1 and first_y==last_y) or
(first_x==last_x and abs(first_y-last_y)==1) or
(abs(first_x-last_x)==1 and abs(first_y-last_y)==1)
):
tmp_bdies[-1].extend(tmp_bdies[0][::-1])
del tmp_bdies[0]
for k in range(0, len(tmp_bdies)):
tmp_bdies[k] = np.array(tmp_bdies[k])[:, np.newaxis, :]
if(len(tmp_bdies)>0):
boundaries.extend(tmp_bdies)
return boundaries, np.sum(indep)
# this function approximate each boundary by DP algorithm
# https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
def approximate_RDP(self, boundaries, epsilon=1.0):
boundaries_ = []
boundaries_len_ = []
pixel_cnt_ = 0
# polygon approximate of each boundary
for i in range(0, len(boundaries)):
boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False))
# count the control points number of each boundary and the total control points number of all the boundaries
for i in range(0, len(boundaries_)):
boundaries_len_.append(len(boundaries_[i]))
pixel_cnt_ = pixel_cnt_ + len(boundaries_[i])
return boundaries_, boundaries_len_, pixel_cnt_
class MBAMeasure(object):
def __init__(self):
self.bas = []
self.all_h = 0
self.all_w = 0
self.all_max = 0
def step(self, pred: np.ndarray, gt: np.ndarray):
# pred, gt = _prepare_data(pred, gt)
refined = gt.copy()
rmin = cmin = 0
rmax, cmax = gt.shape
self.all_h += rmax
self.all_w += cmax
self.all_max += max(rmax, cmax)
refined_h, refined_w = refined.shape
if refined_h != cmax:
refined = np.array(Image.fromarray(pred).resize((cmax, rmax), Image.BILINEAR))
if not(gt.sum() < 32*32):
if not((cmax==cmin) or (rmax==rmin)):
class_refined_prob = np.array(Image.fromarray(pred).resize((cmax-cmin, rmax-rmin), Image.BILINEAR))
refined[rmin:rmax, cmin:cmax] = class_refined_prob
pred = pred > 128
gt = gt > 128
ba = self.cal_ba(pred, gt)
self.bas.append(ba)
def get_disk_kernel(self, radius):
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (radius*2+1, radius*2+1))
def cal_ba(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
"""
Calculate the mean absolute error.
:return: ba
"""
gt = gt.astype(np.uint8)
pred = pred.astype(np.uint8)
h, w = gt.shape
min_radius = 1
max_radius = (w+h)/300
num_steps = 5
pred_acc = [None] * num_steps
for i in range(num_steps):
curr_radius = min_radius + int((max_radius-min_radius)/num_steps*i)
kernel = self.get_disk_kernel(curr_radius)
boundary_region = cv2.morphologyEx(gt, cv2.MORPH_GRADIENT, kernel) > 0
gt_in_bound = gt[boundary_region]
pred_in_bound = pred[boundary_region]
num_edge_pixels = (boundary_region).sum()
num_pred_gd_pix = ((gt_in_bound) * (pred_in_bound) + (1-gt_in_bound) * (1-pred_in_bound)).sum()
pred_acc[i] = num_pred_gd_pix / num_edge_pixels
ba = sum(pred_acc)/num_steps
return ba
def get_results(self) -> dict:
mba = np.mean(np.array(self.bas, _TYPE))
return dict(mba=mba)
class BIoUMeasure(object):
def __init__(self, dilation_ratio=0.02):
self.bious = []
self.dilation_ratio = dilation_ratio
def mask_to_boundary(self, mask):
h, w = mask.shape
img_diag = np.sqrt(h ** 2 + w ** 2)
dilation = int(round(self.dilation_ratio * img_diag))
if dilation < 1:
dilation = 1
# Pad image so mask truncated by the image border is also considered as boundary.
new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
kernel = np.ones((3, 3), dtype=np.uint8)
new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation)
mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1]
# G_d intersects G in the paper.
return mask - mask_erode
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
bious = self.cal_biou(pred=pred, gt=gt)
self.bious.append(bious)
def cal_biou(self, pred, gt):
pred = (pred * 255).astype(np.uint8)
pred = self.mask_to_boundary(pred)
gt = (gt * 255).astype(np.uint8)
gt = self.mask_to_boundary(gt)
gt = gt > 128
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive
bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs # positives
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
ious = TPs / (T + bg_w_thrs)
return ious
def get_results(self) -> dict:
biou = np.mean(np.array(self.bious, dtype=_TYPE), axis=0)
return dict(biou=dict(curve=biou))